
GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

(THRU)

_/
(CODE)



NOTICES

When Government drawings, specifications, or other data are used

for any purpose other than in connection with a definitely related Gov-

ernment procurement operation, the United States Government thereby

incurs no responsibility nor any obligation whatsoever, and the fact that

the Government may have formulated, furnished, or in any way supplied

the said drawings, specifications, or other data, is not to be regarded by

implication or otherwise as in any manner licensing the holder or any

other person or corporation, or conveying any rights or permission to

mamdacture, use, or sell any patented invention that may in any way be

rel_ted thereto.

The Government has the right to reproduce, use, and dietributethls

report for governmental purposes in accordance with the contract under

which the report was produced. To protect the proprietary interests of

the contractor and to avoid jeopardy of its obligations to the Government,

the report may not be released for non-governmental use such as might

constitute general publication without the express prior consent of The

Ohio State University Research Foundation.

_li_ied requesters may obtain copies of this report groin the

Defense Documentation Center, Cameron Station, Alexandria, Virginia.

Department of Defense contractors must be established for DDC serv-

ices, or have their "need-to-know" certified by the cognizant military

agency of their project or contract.

I
i
I
I
I
I

I
!

I
I
I

I
I

I
I

I
i



REPORT 1093-25

REPORT

by

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION

COLUMBUS, OHIO 43ZlZ

Sponsor National Aeronautics and Space Administration

Office of Grants and Research Contracts

Washington, D° C. 20546

Grant Number NsG-74-60

Investigation of Receiver Techniques and Detectors for Use

at Millimeter and Submillimeter Wave Lengths

Subject of Report An Interferometric Receiver for

Submillimeter Radiometry

Submi_ed by R. A. Williams

Antenna Laboratory

Department of Electrical Engineering

Date 1 February 1965

The material contained in this report is also used as a

dissertation submitted to the Department of Electrical

Engineering, The Ohio State University as partial

fulfillment for the degree Doctor of Philosophy.



l
l

I
I

I
I

I
I

I
I

l
I

I
I

l
I

I
'i

ACKNOW LEDGMENTS

The research work described in this dissertation was financed

in part by Grant-in-Aid funds from the Department of Electrical

Engineering of The Ohio State University.

The author wishes to acknowledge the valuable comments and

suggestion8 of Dr, William So C ° Chang of the Department of

Electrical Engineering and those of Drso Ely E o Bell and Richard

Bo Sanderson and Mr, Ed Russell of the Department of Physics °

ii



I
I

I
I

I

I

I
I
I

I
I

I
I

I
I

I
I

I

ABS TRAC T

Radiometry in the submillimeterwavelength region differs

from centimeter-wavelength radiometry in three basic aspects:

(1) for low-temperature sources the Rayleigh-Jean approximation

to Pianck's radiation iaw no longer applies and the complete

Planck expression must be used, (2) due to the large size of the

radiation detector the radiometer beamwidth is determined by

geometrical optical effects rather than by diffraction effects due

to the size of the antenna aperture, and (3) since the superhetero-

dyne principle used at lower frequencies has not yet been developed

for use in the submilllmeter=wavelength region the selection of the

wavelength region which itis desired to measure must be accom-

plished by quasi-optical means. The first two aspects of the sub-

millimeter radiometry problem are discussed and summarized in

graphical and tabular form. The third aspect of the problem is

One of the quasi-optical means of wavelength selection in

the submillimeter region is the Michelson-type of interferometer

adapted for the submillimeter region by the use of wire-mesh

beam splitters and front-surfaced mirrors. Such an interfero-

meter may be used in one of two modes of operation: either an

interferogram function is obtained as one mirror is moved slowly

iii
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and the Fourier transform of the interferogram taken by means of

digital computation techniques to obtain the power spectral density;

or else the power spectral density may be obtained directly by

means of a process common1_ _ known as periodic interferometric

modulation. These two methods are discussed theoretically and are

compared to each other and to the use of a grating monochromator

with respect to signal-to-noise ratio, measurement efficiency, and

ease of operation. Methods of improving the shape of the interfero-

meter response function and of trading signal-to-noise ratio for

higher instrument resolution are discussed.

An interferometric instrument suitable for operation in

either the aperiodic or periodic modes has been built and tested.

Measurements made in both modes of the atmospheric water-vapor

absorption over a two-meter path length show good agreement with

measurements made by other experimenters using grating-type

instruments. Data is also given on experimental tests of the

methods for improving the instrument response function and for

trading signal-to=noise ratio for higher resolution. It is con-

cluded that such an instrumen _- would be satisfactory for making

submillirneter-wavelength radio-astronomy measurements.

iv
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CHAPTER I

INTRODUCTION

A. Centimeter vs Submillimeter Radiometry

A radiometer - whether at centimeter, millimeter, sub-

millimeter, or optical wavelengths - consists of a sensitive

receiver or detector connected to a directional energy collector,

or antenna, which is pointed towards the radiation source. In this

dissertation the basic difference be .tween making observations at

longer (centimeter) wavelengths, or shorter (near-infrared or visi-

ble) wavelengths will be considered, and the different methods of

making submillimeter-wavelength radiation measurements will be

discussed and analyzed. For convenience, the submillimeter region

will here be considered as from 50 to 1000 microns wavelength.

One of the differences between submillimeter-wavelength and

centimeter-wavelength radiometry is the difference in the form of

the radiative power law. At centimeter wavelengths the Rayleigh-

Jean approximation to Planck's radiation law is valid for most

sources of interest (k T s > 77 cm- degrees Kelvin) and permits a

simple linear relation between the source temperature and the total



radiated-power spectral density per wavenumber (frequency)

unit:

(1) E(u ) _ vZkTs (watt-cm),

and

(z) AE(v ) _ vZk(ATs) (watt-cm) .

At visible and near-infrared wavelengths (where kT s < 0.3 cm-

deg K) the Wien approximation can often be used to obtain a degree

of simplification:

(3) E(v ) _ v s e "ch/kkTs (watt-cm).

in the submillimeter-wavelength region neither of these

approximations usually apply and one must go directly to the com-

plete Planck expression to obtain a relationship between the source

temperature arid the radiated-power spectral density.

However,

I

l

I

I

I

I

B. Detector Detectivity

In the submillimeter region the sensitive low-noise super-

heterodyne receivers of the microwave region and the efficient low-

noise quantum detectors or photographic plates of the optical region

are not operable. Thus, one must, at the present time, at least,
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resort to the use of thermal-type detectors such as bolometers,

thermocouples, and pneumatic detectors (Golay cells). In gen-

eral the detectivity of these detectors is several orders of mag-

nitude less than that of the detectors or receivers available at

other wavelengths.

C. Limitations Imposed by Geometrical Optics

In the case of a radiometer where the detector size or re-

ceiver input size is comparable to or smaller than the radiation

wavelength and the antenna aperture diameter is several wave-

lengths or larger the beamwidth or spatial resolution is determined

primarily by the size of the antenna aperture, This is true both in

the case of a microwave dish antenna and an optical telescope,

where in the former the detector input is a waveguide or a coaxial

line and in the second the detector size corresponds to a single

grain on the photographic plate and the aperture of the objective

lens or main mirror corresponds to the antenna aperture. In both

cases the diffraction spot size is larger than the detector input.

Therefore the spatial resolution is determined by diffraction effects

controlled by the size of the antenna aperture. In contrast to these,

the spatial resolution of a submillimeter radiometer using a thermal

detector is limited by geometrical optics. This occurs because the
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detector size is large compared to the diffraction spot size for

any receiving dish diameter of practical interest. The result is

that the radiometer resolution is dependent upon the detector area

and the focal length of the collecting mirror system rather than

upon the diffraction limitations imposed by the mirror system

ape rtur e.

D. Minimum Detectable Temperature Change

Consider the minimum variation in the equivalent black-

body temperature, T s, of a source which can be detected by a

radiometer equipped with a receiver which can detect a minimum

change in its input power of [APmi n] watts. It can be shown[l,Z]

that I

_r

(4) [ATsmin]- ck[Aw] [Z_Pmin] (°K)

The equations for the factors _ and r are (from Appendix I)

(s)
[kkTs ]z [ech/kkTs-l] z

11 = [-c'_---J ch/kkT s '
e

*See the List of Symbols for the definitions and units of the various

symbols, and see Appendix I for a derivation of equations (4), (5),

and (6).
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and

(6) r

5

Za A m _ a
for [_] s >

= 1 (unity) for [A_] s >

k Z

ZAm[Z_._ls

k 2

= Ae [Ae]s

for [-_q]s <

for [A_] s <

beamwidth at sub-

millimeter wave-

lengths

beamwidth at

centimeter wave-

lengths

beamwidth at sub-

millimeter wave-

lengths

beamwidth at

centimeter wave-

lengths

The value of _] vs k and T s is plotted in Fig. 1. We can also relate

[AT s ] to the minimum detectable change in the input power
min

spectral density, [AEi(v)min], of the collected incoming radiation

by letting [Ei(v)mi n] = [APmin]/[Av] in Eq. (4).

Note that in the case of the centimeter radiometer looking at

a source whose solid angle [Af2] s is larger than the beamwidth

[ATsmin] is not a function of the antenna area so long as the antenna

is not made so small that the beamwidth becomes larger than the

source. In the case of the submillimeter radiometer the beammldth

is not determined by the antenna area, and the temperature sensitivity

z The instrument f-number, F o, is equal to the f-number of either

the collection mirror system or that of the radiation receiver

whichever is numerically larger.
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can be increased (theoretically) by making F o smaller (by making

the antenna area larger and by using larger mirrors within the

submillimeter receiver). The bearnwidth of the subrnillimeter

for the centimeter radiometer,

E. Water Vapor Absorption

Another problem with which one must contendwhen working

in the submillimeter-wavelengtah region is the heavy absorption of

the radiation by atmospheric water vapor. This absorption occurs

throughout the entire region except for a small number of partial

atmospheric "windows, " and is moderately severe even over short

path lengths at a relatively low humidity index.

F. Wavelength Selection

Since the highly selective superheterodynes of the microwave

region are not presently available throughout the submillimeter

region, and since fundamental-mode cavities cannot be constructed

at these wavelengths, one must resort to some type of quasi-optical

means of wavelength selection, such as diffraction gratings or inter-

ference techniques. The instrument which has been constructed and

which will be described in this dissertation uses the interference
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technique found in the Michelson interferometer to enable one to

obtain a measurement of the power spectral density either directly

from the instrument using a technique commonly called "periodic

interferometric modulation" oi" indirectly by obtaining an inter-

ferograrn function as the instrument output which is then processed

in a digital computer to obtain the measured power spectral density,

a process sometimes referred to as l'aperiodic Interferometric

modulation. "

G, The Submillimeter Radiometer

The submillimeter radiometer" which will be described here

uses a thermal radiation detector a_d an interferometrlc means of

wavelength selection, and has a spatial resolution which is deter-

mined by the detector size and the collecting mirror focal length.

The instrument has been built to be operated in either the periodic

or aperiodic mode of interferometric modulation. In the following

chapter the theory of its operation will be discussed, and its use

compared to the use of a diffraction grating monochromator as a

means of wavelength selection. An estimate is made of its sensi-

tivity in terms of the minimum temperature change which it can

detect in an equivalent black-body source. Later chapters will

discuss the construction of the instrument and the experimental

results obtained.
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CHAPTER II

THE THEORY OF THE INTERFEROMETRIC

SUBMILLIMETER RADIOMETER RECEIVER

A. Historical Background

The idea of using interference phenomenon to determine

the power spectral density of radiation by taking the Fourier

transform of the interference pattern was proposed in the latter

part of the nineteenth century by Michelson[ 3], who performed

his experiments in the visible region. Because of the difficulty

of performing the Fourier transform and the advent of prism and

grating spectrometers for use in the visible region, the interfero-

metric method fell into disuse until the early 1950's. At that time

Peter Fellgett of Cambridge University, England applied the inter-

ferometric method to the measurement of stellar spectra and

revived interest in the method[4, 5, 6]. The new interest was based

primarily on three factors: the greater efficiency of this method

as compared to a slit (grating or prism) spectrometer, the availa-

bility of modern digital methods for computing the Fourier trans-

form, and the easy applicability of the method to the far-infrared

region. Much of this early renascence work was reported at the

9
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"Colloquelnternational sur les Progre's Re'cents en Spectroscopie

Interfe_entielle"[7] . Since this period considerable research and

analysis has taken place concerning the interferometric method,

most of this being in the far infrared utilizing both the Michelson

type of interferometer[8,9, I0] and the variable-groove-depth-

lamellar-grating interferometer[ll, IZ]. The technique has also

been applied to the millimeter-wavelength region using waveguide

components[ 13, 14]. Both the aperiodic[6,9, I0, 15] and the

periodic[7, 16, 17, 18] modes of operation have been discussed,

and in some cases compared theoretically[ 19].

The present dissertation briefly summarizes and unifies the

theory of both the aperiodic and the periodic modes of operation and

discusses the fundamental resolution of the interferometric receiver

by analyzing its response-function integral equation, and also pre-

sents a simple method by which the shape of the instrument response

function can be improved[ Z0, Zl ].

the aperiodic and periodic modes,

This method is applicable to both

and gives a better response func-

tion thanthe appodization method suggested earlier[8, IZ]. A

description is given of an instrument, which was constructed along

I
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the Michelson design using a wire-mesh beam splitter, I which

is operable in either the aperiodic or the periodic mode (in the

latter case using an improved signal-processing method which

helps to eliminate backlash and turn-around problems). Data is

presented on the results of tests in both modes of operation which

shows the beam-splitter characteristics and the effects of the re-

sponse-function improvement, and which permits a comparison

between the two modes of operation.

B. The Aperiodic Method

1. Theory: The purpose of any radio receiver is the selec-

tion of a desired v_avelength or band of wavelengths from the total

of all of the radiation entering the receiver and the conversion of

this radiation into a form which can be perceived by the operator

of the equipment. In the receiver to be discussed herein, a quasi-

optical interference method is used as the means of wavelength

selection and a bolometric or thermal radiation detector is used

to convert the radiation into an electrical signal which can be

I The decision to use a wire mesh as the beam splitter was made

after discussions with E.E. Bell, R.F. Rowntree, M.E. Vance

and P.B. Burnside concerning measurements made on the trans-

mission and reflection of various beam-splitter materials. These

data were obtained in part at The Ohio State University (Dept. of

Physics) [ 22], and in part at The University of Freiburg (Germany)

Inst. of Physics (the latter by E.E. Bell and L. Genzel)[33].
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electronically processed and displayed or recorded on an indi-

cating instrument. The basic wavelength-selection mechanism

which is employed is that of the optical Michelson interferometer,

which is here adapted for use in the submillimeter-wavelength

region. Its operating principles shall be reviewed briefly.

Let the radiation incident upon the receiver input area have

a total power spectral density Ei(v) watt-cm, where v is the radia-

tion wavenumber in cm -I units, and let it be divided into two paths,

one of which is y centimeters longer than the other_ before being

recombined. Upon recombination an interference phenomenon

will take place and the power spectral density of the recombined

radiation will be

= El(v) (1 + cos 2_vy) (watt-cm).
(7) E°(v' _) Z

If Eo(v, _)

entering the receiver,

is

(8)

is integrated over the wavenumber range of the radiation

the total power of the recombined radiation

_o(_)

_oEO( _)dv= 1 _oEi(v)dv+ 1 oEi(v)cos Z=v7 dv

(watts).

is composed of one term which is independent of 7 and a second

which is depende'nt upon 7 and which is one-half the cosine Fourier

I
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I
I
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I
I
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transform of Ei(v)- Thus, if the variable portion of Io( _ is re-

corded as "7 is varied from -00 to _ (or from zero to _, since

Io(_) should be an even function of _) it should be possible to

obtain the function El(v) by t_king the inverse cosine Fourier

transform of Io(_). Only the varying portion of Io(_) will con-

tribute, since the Fourier transform of a constant is zero at all

frequencies other than v -- 0 (where it is an impulse function), and

thus, for the frequencies of interest here, one has

--00

(watt-cm).

Since it is not practical to let _/ go to infinity, one must take

into consideration the effects of truncating Io(N) at some finite value

where _ = _max" In effect this truncation can be thought of as re-

sulting from multiplying the true Io(_) by a window function which

extends from "Nmax to +_max:

(i0) Io(_/) = Io(_/) • W(_/) (watts),

where

(11)

-_/max <-- _/ <-- + _max

_ < "_max

_ > +_/max "

mm
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It will be remembered that the effect of multiplying together the

transforms of two functions is equivalent to convolving the actual

functions themselves[Z3]. Since W(_) is the transform of the

I

function (sin 2WVymax/WV), the inverse transform of lo(_))which

here shall be called the measured power spectral density,

EmI(v), is given by

(IZ) Emi(v ) : f_
Uo

sin ZWYmax (v-v')
Ei(v, ) dr'

_(v-v')

I

I
I
I

I
(x)

= _ Ei(v,) RI( v dr' (watt-cm),V l)
O

Ri(v, v ,) - which is convolved with the actual spectral density El(v)

to give the measured spectral density Emi(v ) - will be called the

instrument response function, and can be thought of as being very

similar to the passband response function of a conventional radio

I
I

I
or microwave receiver.

The constant-value component of lo(y) causes some problems

when lo(N) is truncated at "_max' since the contribution of this term

to the inverse transform will be zero only if the inverse transform

is calculated at wavenumber values where

Therefore, one way of determining Eml(v )

late it only where v = Vn:

v = vn = n/2Ymax.

with validity is to calcu-

I
I

I



I

I

I

!

I

I

I

I

I

I

I

I

I

!

I

I

I

I

15

(13)

_'max

= 8 _C lo(y) cos n_ dy (watt-cm).Eml(vn)
•_o Ymax

A second method of calculating a valid Emi(v ) would be to subtract

the constant term in Io(y) from Io(N) before taking the inverse

transform. However, there may be some difficulty in determining

the value of this constant component from the data taken, especially

if the radiation spectrum contains sharp absorption or transmission

lines and if Ymax is rather small, since in this case Io(y) will still

be varying rather greatly as a function of "y for _ greater than Ymax-

But under these conditions the passband of the instrument - which

can be defined as the distance between the first zeros on either side

o£ the instrument response function peak, Av = 1/Ymax - would be

wider than the lines appearing in the radiation spectrum, and hence

Emi(v), the measured power spectral density, would not, at any

rate, be a good representation of the actual spectral density, Ei(v).

This is discussed further at the end of this chapter.

The actual calculation of the inverse transform can be most

conveniently carried out by using a digital computer and digitizing

the interferogram function lo(y). One precaution which must be

observed here is to make the increment between digital points,' Ay,

small enough that the resulting digitized function is a good repre-

sentation of Io(y), and to select its value so that Ymax (which must

be an integer multiple of A_)is some mathematically convenient value.



I

R(u -Un) 16 I

_,.o__ |

,
o .... _- _ I

I I I o I 1

I I I I._-_ (A ;_)_ J I I II I I i I I , 1
4 3 2 t I 2 3 4

2"Ymo _ 27m0 x 27mox 27mox 27mox 2)'mo x 2 )"ma x 2¥rnax

Fig. Z--The basic instrument response function.

AS may be seen in Fig. 2, the interferometric instrument I

response function (solid line) has less central-peak area than the

ideal rectangular response function which is usually desired for

receiver passbands (dotted line). Other defects are the sloping

sides of the main peak and the large side responses. Quite a bit

I

I

I
of improvement in the overall receiver response function can be

made by adding together several of the basic sin x/x type of

response functions which peak at values of v which differ from

each other by i/2 7ma x. Figure 3 shows how three such basic

response functions were combined to give a new function whose

main peakis more rectangular and whose side responses are

I

I

I
I

smaller. In order to maintain the same overall bandwidth, Av,

it was necessary (for the case of three added functions) to make

!

_max = Z_rnax so that the width of the individual peaks is decreased.

!

The formula for calculating Era(v) is written by combining three of

I

I

I
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Fig. 3--Improved instrument response function (b)

obtained by adding three of the basic

response functions (a).

the basic transform equations:

I

' _o max(14) EmI(v) = 8

!

._maxlo(y)[cos ZITvy]d_f+8 lo(y)
_O

[cos

+ 8 ___ cos Zzr v + dN

Jo "-_max}]

I

or, if Era(v) is calculated at the permitted values of v n

then

17

(watt-cm),

!
= n/ZTmax,
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_nax [ _ + cos(15) E_ni(Vn) = 8 Io{_) cos "_nax
0

(n-l)_ _(
i

Ymax

+ COS (n+l)w _( dy

max

(watt-cm).

Since each of the terms in (15) represents adjoining points on

Emi(v ) as determined using the basic instrument response

function, the value of E' may be calculated very easilyms(v)

from Eml(v) by simply adding EmS(vn), EmS(vn+l ), and EmS(vn_ _

to form E' . Thus it is not necessary to repeat the entire
ms( vn)

!

transform-taking procedure a second time to determine Ems(v )

if Ems(v ) is already available. Table I ta.bulates the effects of

combining various numbers, _, of basic response functions to

obtain an improved response function. St shows that the most

improvement for the amount of calculation needed is obtained by

using three, five, or seven as the value of _ . Sn each case,

!
Y
max

= (1 +1) Ymax/Z.
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15
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TABLE I

VARIATION OF RESPONSE FUNCTION WITH I

d-c output due
to radiation at

wavenumbers

in main peak

(A)

3.7038

4. 9449

5. 3807

5.6026

5.7370

5.8270

5.8916

5. 9429

5.9804

6.0105

6.0351

6.0557

6.0731

d-c output due
to radiation at

wavenumber s

in side lobes

(B)

percentage
side lobes

are of main

peak

-0. 562Z

-0. Z325

-0. 1447

(100 × B 'A)

15.18%
4.70

2.69

ratio of main

peak output
for k reference

signals to main

peak output for
I =1

(A :3.7038)

-0.1048

-0. 0821

-0. 0674

-0. 0572

-0. 0524

-0. 0463

-0.0415

-0. 0375

-0.0 343

-0.0 _16

1.87

1.43

1.16

0.97

0.88

0.77

0.69

0.62

0.56

0.52

1.0000

1. 3351

]. 4528

1.5127

1. 5489

1.5732

1. 5907

1. 6045

1.6147

1. 6228

l .6294

1.6150

1.6_96

2. Noise analysis. It is interesting to compare the theo-

retical noise level of the interferometric receiver with that of a

grating-type monochromator wherein the radiation is admitted

through a narrow slit and dispersed by a diffraction grating. A

second narrow slit positioned at a selected point in the grating dif-

fraction pattern allows radiation in a narrow wavenumber region,

(AV)G , to pass on through to a radiation detector. By increasing the

slit widths in the instrument and also the grating dispersion factor

it is possible to make the size of the grating instrument input aper-

ture equal to that of the interferometric instrument and still
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maintain the desired spectral resolution, although this will not be

the maximum resolution of which the grating instrument would be

capable with smaller slit widths[Z4] . Some fraction, l<i,of the

power spectral density entering the grating instrument is dis-

persed into the first grating order, which is the order in which

the output slit is usually located. The dispersion factor of the

grating and the widths of the input and the output slits determine

the effective passband, (Z_v)G , of the grating receiver. The power

delivered to the detector is therefore given by

1 K (AV)G (watts)
(16) PD = _ Ei(v)

where the factor of one-half occurs because of the fact that the

radiation must be chopped in order to obtain a signal from the de-

tector, thereby eliminating one-half of the average input power.

If the radiation detector has a noise equivalent power (NEP) for

one cycle of bandwidth centered at the audio frequency at which

the radiation is chopped, and if the integration time following the

synchronous detector or rectifier is TD, then the effective signal-

to-noise ratio, (S/N) G, of the grating receiver will be

z Here it is assumed that (NEP) is determined by means of a cot-

relator-amplifier with an effective bandwidth of 1 cps due to the

time constant of its integrator. This (NEP) will be one-half of

the (NEP) measured with a 1-cps-bandwidth tuned amplifier.

I
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(17) (S/N)G_ PD_Z'r D = K (.J_D)(Av)G " El(u)

(NEP) Z (NEP)

where the effective noise-power audio bandwidth has been taken

to be equal to 1/ZTD. Since K and (AV)G are more or less fixed

by the application and the inherent properties of the instrument,

the only way in which the S/N ratio of the grating receiver can be

improved is by increasing the integration time, TD, thereby de-

creasing the rate at which the spectrum can be scanned.

In determining the S/N ratio of the interferometric instru-

ment it is convenient to consider the interferogram as a voltage

time function existing from time t = 0 to time t = T t, where T t is

the total length of time required to record the interferogram data.

T t is equal to _max/S, where s = d_/dt is the time rate of change

of the path-length difference. As Io(t) , where t = _/s, is recorded

there will also be recorded along with it a noise voltage, Nit), where

the power density spectrum of this voltage is given by

I (18) N(f) =

I

!

[ (NEP)II ] z (volts)Z

1 + (ZwfTD)Z CPS

where (NEP) is the noise equivalent power of the radiation-detector

system 3 (in watts per c_) and _2 and T D are the response factor

3 The radiation-detection system is taken to include the radiation

chopper, the bolometer, the amplifier, the synchronous rectifier,

and the R-C low-pass filter following the rectifier.
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(in volts per watt) and the rectifier time constant (in seconds)

respectively of this system. The time constant, _D' must be

small enough so as to not introduce any appreciable attenuation

and/or phase shift of the signal at the frequency f = vs, where v

is the wavenumber of the radiation being measured. The attenu-

ation will be less than 3 db and the phase shift less than forty-five

degrees if7 D < I/2w v s. Usually T D should be made somewhat

smaller than this, and therefore the factor (i + (2WTDVS) 2) will be

approximately unity at the audio frequencies of interest.

If one takes the final output signal (expressed as a voltage)

to be

2

it is easily seen that Sl(f) = _2Eml(v)/Zs, which, if an input having

a smooth spectral density, El(u) , is being measured, gives

Si(f) = _2Ei(v)/Zs , where the factor of two results from the fact that

the radiation must be chopped in order to activate the detector sys-

tern.

The noise voltage density on the output signal (where the signal

itself is proportional to the measured power spectral density) will

then be given by

I
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S Tt N(t}(Z0) Ni(f) =8 (cos Z_ft) dt (volt-sec).
o

In the limit as T t goes to infinity this is just four times the cross-

correlation coefficient of the function (N(t) × Tt) with the function

(cos Zwft). At finite values of T t is it equivalent to passing 4(N(t ) X

Tt) through a bandpass filter of noise-power bandwidth I/ZT t cen-

tered at the frequency f = vs. Thus, the mean-square value of

the noise density on the output is given by

(ZI) [4(NEP)e Tt ]z X (I/ZTt) (volt-sec) z ,
2

and the rms noise voltage density by

(ZZ) Nl(f) = Z(NEP)_ J-_ (volt-s ec),

where the 1/Z factor in Eqo (Zl) enters because only the cosine

function is employed in the correlation integral rather than both the

cosine and sine fttnctions. Thus, the S/N ratio for the interfero-

metric receiver becomes

Ei{v)

(z3) _ i 4 s(NEP)J-_

Ei(v) (AV)l_T[_t

4(NEP)
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Since the sensitivity of both the grating-and the kdlchelson-

interferometer-type receivers can be increased by increasing the

length of time used to take a complete set of measurements (time,

Tt, required to measure from vI to v z in wavenumber) under

similar conditions of input power and instrument bandwidth, it is

interesting to consider a quantitative figure of merit, Q, for each

case, where

(24) Q : (S/N) • (vz -vl) • 1

T t El(v) (Av) z

or, alternatively as

(1/watt-sec),

(zs) Q :

vz (S/N) dv
x Ei(v) (Av)Z

v 2

_o O.__.t__tdv
v 1 3v

( 1//watt-second).

For the grating receiver it can be shown that for a fixed slit

width and constant rate of slit motion along the diffraction pattern

(see Appendix II), the above becomes

(26) QG =

vz K _Z'_D(AV)GEi(v ) dv• Z

i Z(NEP) El(v) (Av) G

v

,_OvZ ZT D m dv

1 v z d(cos *) [A*I
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YZ

K _ ZT D _v,

(Z6) Z(NEP) (_vz

ZT D(cont) 3
v 1

m dv

d(cos ¢)

m dv

v z d(cos _)[A%b [

Z5

K _!Z___ =_D , I (i/watt-sec),4(NEP) . TD 4(NEP)

where m is the grating order used (m usually equals one), d is the

spacing between grating lines, and _ is the angle of diffraction; and

where it has now been assumed that the order of magnitude of K is

unity.

For the case of the interferometric receiver (since Ymax=i/(Av)i,

T t = Ymax/S = I/s(Av)i , and Sma x = I/2-WTDvz) ,

(Z7) v D = I/Z =sv z = (Av)iTt/Zwv z (seconds),

or

(Z8) (seconds).

Therefore

(zg) Q_=
Ei(v ) (Av)I_T t (vz'v I)

4(NEP) T t Ei(v)(Av)_

(v Z - Vl)

(4 Z_)(NEP)4 (Z_v)l vz-r D

(1/watt- s ec onds).
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From a comparison of Eqs. (29) and (26) one sees that QI

is about 0.3 (vz-Wl)/_ vz(LXv) I larger than QG, or since (vz-v,) and

1 .I (Vz -'_1)
v z are about the same order of magnitude, QI is almost _ (LXv}I

times QG" Since (v z-vl) can be as large as desired, this in effect

says that if the signal-to-noise ratios and the instrument bandwidths

of the two instruments can be made equal, the interferometric re-

ceiver can acquire the necessary data needed to calculate the entire

spectrum (consisting of M = (v z-vl)/(Av) measurements between

vI and vz) while the grating instrument is acquiring the data neces-

sary to determine the power spectral density at slightly more than

3_-M points in the spectrum; or one can say that the interferometric

receiver is about f-M/3 times more efficient than is the grating

receiver[ 5]. All of this of course does not take into account the

beam splitter efficiency, grating efficiency, and other problems of

a more practical nature which will affect the S/N ratio and the

figure of merit of the two types of receivers. These matters will

be discussed in detail in the next chapter.
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C. The Periodic Method

Consider the case where a complete scan from -Nmax to

+Nmax is performed rather rapidly in 2Vp seconds (Tp is the time

required to scan from "Nmax to zero, from zero to +_/max' etc.)

and let this scan, or its equivalent from +_max to -Nmax' be repeated

once every Tp seconds (see Fig, 4). The audio components of the

I J I I _ 3Tp f 5T_ _ 7Tp

__ I / ,,T. \ _- / "f \ "E

_,r*° /o "*°i!_ .'x , / _ A u

II I
i t-.L------ 2 rp --------_

I
I i

I _!

t

Fig. 4_-Path-length difference function of the

periodic interferometric receiver.

radiation-detector output will be the harmonics of fo = 1/Tp, but if

T is very large the components will fall very close together and if
P

Tp >> ZTp the change in amplitude from one component to the next

will be so small that the spectrum can be thought of as approaching

the continuous spectrum which would occur for Tp equal to infinity.

I
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The velocity of path length change is now given by s = Ymax/Tp

and it establishes a relationship between a particular audio frequency

in the detector output and the radiation wavenumber, v:

(30) fv = sv = (Ymax)V/_p (sec -1 ) •

In the case where Tp = oo the magnitude of the detector output

at frequency fv corresponds to the magnitude of Era(v), where v is

relatedto fv by Eq. (30). It has been assumed here that the path

length change begins abruptly at "Ymax and -Wp and ends abruptly

at +Ymax and _rp, but that the radiation is present from t = -oo to

t = +_o. If one assumes that Io_Y) is a symmetrical function of y the

magnitude of the interferogram from t = -oo to t =-Wp will be constant

and equal to the magnitude from _p to t = +oo. If this is allowed to

exist also from -Tp to q_rp one has a constant component which exists

from t =-oo to +oo. This component of the interferogram will contribute

to the power spectral density only at zero frequency; therefore, for

the purposes of this dissertation the contribution of the constant

component in the interferogram need not be considered. If Tp is

finite but still much greater than 2Vp these results can be used as an

approximation to the actual case. This has been done by at least one

group of experimenters[13,14]. However, this requires that a long

dwell period exist between each scan in order for the approximation
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to be valid, and during this dwell period no information is being

derived from the input signal. This causes a decrease in the S/N

ratio of the system. Practical measurements utilizing this type of

system can be made with a narrow-band tuned audio amplifier.

Long et al. [13, 14] have shown that if the audio bandwidth, B, of

the amplifier is great enough relative to 1/Vp (in the notation of the

present paper) then the wavenurnber bandwidth of the instrument is

dependent upon the bandwidth of the tuned audio amplifier,

(31) (Av) = _B (cm_l),
S

I

I

I

rather than upon the length of stroke, _max"

If Tp is only slightly larger than ZTp the situation becomes much

different, since instead of a continuous or quasi-continuous audio

spectrum, one has a spectrum consisting of discrete components of

fairly wide frequency separation where the amplitude of one com-

ponent may vary quite markedly from that of its nearest neighbor.

As stated before, these components will be harmonics of 1/Tp:

l =n(_p)
(32) fn = nfo (sec "1 ).

I Since the output of the radiation detector is now a periodic function,

one determines the Fourier series components rather than the

Fourier transform of the interferogram function (see Appendix III).



3O

/k convention has been adopted here so that the result has the

dimensions of total power at a certain frequency rather than

the dimensions of power spectral density. Thus, instead of

Eq. (13), one has

2Tp _Ymax(33) Pn -
Ymax Tp o

' y]dy {watts)Io(y) [cos 27rv n

' = n/s Tp (see Appendix III). From Eq. (337 and the rela-where v n

' = n/s Tp = n(vp/Tp Ymax) it is evident thattion that v n

2Tp fYmax [ 2w ny(34) Pn- Io(y) cos
Ymax Tp _o Ymax

(watts),

which is very close to being Emi(vn)/8 Ymax as given by Eq. (13) if

the approximation that Tp _ 2Vp is made. Therefore, the periodic

mode measured power spectral density is given by

(35) Emp(vn) = 8PnYma x = Emi(vn) (watt-cm),

where v n_ Vn, and therefore

(36)
, v) dVEmP(vn) = El(v} Rp(vn,

_Ei(v) Rl(vn, v) dv
(watt-cm),

where Rp(vn ,' v) % RI(vn, V)-
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The periodic process just discussed will yield audio compo-

nents at a large number of harmonically related frequencies, fn =

n/Tp, where the minimum and maximum frequencies which are

present are determined by the minimum and maximum wavenumber

values of the radiation which reaches, and is detected by, the radi-

ation detector. The magnitude of the component at each frequency

will be related to the power spectral density of the radiation in the

wavenumber region around v n = (n/Ymax)(Tp/Tp) as given by

Eq. (36). Therefore, a rough measurement of the power density

spectrum could be obtained by measuring Pn at each frequency fn"

However, since the response of the radiation detector and its as-

sociated circuitry varies quite widely at different audio modulation

frequencies, it is desirable to perform all of the measurements at

one particular audio frequency where n = N. Tuning over the wave-

number region of interest must then be accomplished by changing

the relationship between fN and v h. Since v h = NTp/YmaxTp this

can be done by changing Ymax" This will also result in a change in

the bandwidth, (Av)p, of the instrument response function, but since

(Av) = 1/Yma x the relative resolution of the instrument remains con-

stant:

(37) R elative R e solution -

I

v N

{AV)p - NTp/Tp _ N/_.
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From a practical standpoint it would be possible to use a good

narrow-band amplifier as the means of selecting out the frequency

component at fN' but a better signal-to-noise ratio can be achieved

by employing correlation detection, utilizing a reference signal ob-

tained from the mechanism which varies the path-length difference.

The mechanics of this method will be considered in the following

chapter s o

As in the case of the aperiodic interferometric method, im-

provement of the instrument response function, RID(v ' Vn), may be

achieved by combining several of the basic responses. In the

periodic case this involves the adding together of several adjacent

audio frequency components o This can be done quite neatly when

correlation detection is employed by simply supplying the sum of

three properly phased reference signals to the correlator multiplier,

but when a sharply tuned amplifier is used as the frequency-selecting

mechanism some problems may be encountered due to the relative

phase shifts which the amplifier may introduce between the various

audio frequency components o

For the case of the periodic interferometric receiver the inter-

ferometer output which is modulated at frequency fl_ has a power IDN

which is approximately equal to (i/4)Ei(v[')(Av)p'i_ where (AV)p is the

I

I
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I

I

I

I

periodic instrument l_ssband. The noise power of the radiation de-

tector referred to its input will be given by (where 7 is the R-C

time constant of the correlator)

(38) ND _ (NEP) watts).

J Zw D

Thus, the S/N ratio for the periodic case will be

PIN Ei(vh) (AV)p_ ZrD

(39) (S/N)p - _DD % 4 (NEP)

To determine the time for the periodic instrument to scan from v, to

v z, first remember that the relative resolution, _AV)p, of the

periodic instrument remains a constant, which will be called C.

Then let the scan from the wavenumber v - ((AV)p/Z) to v + ((Zi_p/Z)

be accomplished in the time period ZT D. This will give

(40) at Z_D ZCTD- - (second-cm),
,gv (Av)p v

I

I

I

and therefore

(41) Qp =

4(NEP) micvh) (++>}_

_i z C dv
ZT D _"

I
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4(NEP)
v 1

(cont) v z 8(RE P) (1/watt-s ec),

2TD S _Cv dv
v I

which except for a factor of two is the same as that for the grating

instrument, and still far below the figure of merit for the aperiodic

interferometric receiver.

D. The Best Estimate of El(v)

The measurement of the power spectral density of the radiation

entering a radiometric receiver may have one of two objectives:

either to obtain an accurate measurement of the average power re-

ceived over a given wavenumber region, (_v),

possible estimate of El(v) as a function of v.

or to obtain the best

In the first case (Av)

is already determined and is probably fairly large, and the main

desire is to make the shape of the instrument response function ap-

proach a rectangle as nearly as possible. This can be done by the

response-function improvement method described in Section B of

this chapter.

The second case is somewhat different, since it is desired to

have (_v) small enough to resolve the narrowest spectral lines ap-

pearing in El(v), and yet not so small as to decrease the signal-to-noise
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ratio below an acceptable limit. 4 Since (Av) is determined by the

value of Nmax, which is in turn limited by diffraction effects in the

instrument, s it may not always be possible to make the resolution

of the instrument itself sufficiently great to resolve the spectrum

of Ei(v). However, it will be shown that, instrument noise level

permitting, it is possible to process the experimental data to obtain

any instrument resolution desired.

It has already been shown that El(u} {as modified by the beam-

splitter-e_iciency and the detector-response curves) and Io{N) form

a Fourier transform pair where Ei{v I is an unknown and Io{N} is

known from experiment on the interval -Nmax _ _/_ _max ° If El(v}

exists only over a finite interval of the frequency domain the inter-

ferogram Io{N) will be an analytic function, and hence if Io{N} and all

of its derivatives can be determined exactly at any one point it should

theoretically be possible to determine Io{N ) for all N. From a practical

point of view, if Io{_/} is known with good accuracy over a finite interval

of N it should be possible to obtain a good estimate of Io{N) for values

of _/ outside of this interval. Slepian and Pollak show[ZS] how this

can be done by expanding Io{yi in terms of the prolate spheroidal wave

4See Eq. (Z3) of this chapter.

s See Chapter III.

I
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functions, utilizing the special property of these functions which

ensures orthogonality both on the finite interval and on the infinite

interval of y. The only restriction is that Ei(v) must be band-

limited. The latter restriction is not severe, since the beam-

splitter-efficiency and the detector-response curves cause the

effective input power spectral density to become zero below a certain

wavenumber Vmi n and above a certain wavenumber Vma x. Thus, con-

verting the theory of Sleplan and Pollak to the notation of this disserta-

tion,

(4Z) Io(y) = _, bn%bn(y) (watts),

where (-oo < y < +oo) and where the %bn(y) are the prolate spheroidal wave

functions and the coefficients are given by

S_ 1 _ Ymax(43) b n = lo(Y) _n(Y)dy - kn lo(7)_n(_ ) dy ,
OO

-Ymax

where:

(44) __Y max zks=

_'Ymax n (y)dy .

Both _n(_) and k n depend upon 7max and upon the bandwidth of Io(Y)

(the range of v over which the effective input power spectral density

exists). A complete discussion of the prolate spheroidal wave
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function is given in reference [ 25]. The important point for

the present discussion is that if it can be assumed that El(v) is

bandlimited (and if the noise level permits) then Io(y) can theoreti-

cally be determined on the interval -_ < y < +_ even though it is

measured experimentally only on the interval -Ymax < Y < Ymax (or,

since it is an even function, on the interval 0 < y < Ymax ).

Another method or proving that it is theoretically possible to

recover El(v) from Era(u) is to show that the integral equation (1Z)

relating Em(v) to El(v) may be solved for El(v). Again, if is neces-

sary to assume that El(v) is band-limited. Equation (12.) is a

Fredholm equation of the first kind and a solution may be obtained

by expanding El(v) in a complete orthogonal series. The lower limit

over which El(v) is assumed to exist may be set to zero and Ei(v)

and Era(v) considered as being double-sided functions, having equal

components of magnitudes Ei(v)/Z and Em(v)/2 respectively at -v

and +v. Then

v

_x(45) Era(v) = R (v, v') Ei(v') dr' (watt-cm),
- Vmax

where

(46) R(v ' vo) =
sin 2_max(V-v')

,r(v-v')
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It is also known[ 25] that the prolate spheroidal wave functions, 6

which form a complete orthogonal set on the interval -Vma x < v <

Vmax, satisfy the equation

(47) __ vmax ') d_k(v, ) dr'kkd2k(v) = R(v,v
v _Vma X

where the eigenfunctions, _bk(v ), and their eigenvalues, k k, are

dependent upon Ymax and Vma x. El(v) may now be expanded in terms

of these eigenfunctions,

(48) Ei(v') = _ Ck_k(v, ) (watt-cm)

k

and substituted into Eq. (45) to give

V

(49) Em(v) = Ck R(v, v') _k(v' ) dr'

k -Vmax

: _ Ckkkd_k(v)

k

(watt-cm).

Multiply Em(v ) by %bj(v) and integrate:

6 The prolate spheroidal wave functions are normalized as follows:

co J'O j_k Vmax {0 j_k
_J(v)_k(v)dv / 1 j=k V-Vma x k k j=k
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(5O)
Era(v) _j(v)dv = _ Ckkk

k

V max

-Vma x

q'k.(v) d_j(v) dv

= cj [×j]",

or:

v

1 S max Em(v) _bk(v) dr.
(51) C k - (kk) z -Vrnax

If one is working with the data in digital form an approximate

solution to the integral equation can be obtained by putting the equa-

tion into matrix form and solving by means of digital computer tech-

niques. Let El(v) and Era(u) be digitized at the wavenumber points

designated by v k or uj, where successive points are separated from

one-another by the interval 5¢. Then the integral equation becomes

N

_ Ei(vj ) sin Zrrymax (Vk-VJ) ,, (Sv) (watts-era).
(52) Em(vk) = rr(v k - vj)

j=l

This is equivalent to the matrix equation

(53) [Emk] = [Rkj][Etj]

which may be solved for Eij. A better approximation to the integral

equation may be obtained by using Simpsonls Rule in the writing of

the integral equation in digital form:
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= 1 [EiiRkl + 4Eiz Rkz + 2Ei 3Rk3(54) Em(vk ) -_

+ "" " + 4Ei(N.1) Rk(N.1 ) + Ei N RkN] (watt-cm).

This may also be put in matrix form and solved on the computer.

The preceeding discussion has shown that - given a measured

power spectral density, Em(v), or its equivalent interferogram

function, Io(_), existing only on "Tmax < _ < Ymax - it is theoreti-

cally possible to determine the actual effective input power spectral

density or to determine the interferogram function outside of the

finite interval on which it is known experimentally. This illusion of

being able to obtain additional information for no extra experimental

effort exists because of the fact that experimental error or noise was

neglected in the preceedlng discussion. Even it it can be assumed

that Io(N) can be obtained out to a value of N equal to several times

_max without introducing any additional noise, the total time, Tt,

taken to record the data remains unchanged, while the instrument

bandwidth, (Av)I , is reduced by the same factor as the interval is

extended. Thus, Eq. (23) shows that the slgnal-to-noise ratio is

lowered by this same factor.

Since solving the integral equation (45) exactly is tantamount

to extending 7max to infinity without increasing Tt, one can surmise
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that an attempt to find El(v) exactly by this means would end in

failure because of an infinite noise level on the solution. The net

result is that one is not able to acquire new information by the

preceeding data-processing techniques, but only to trade one type

of information for another (i.e., signal-to-noise ratio for spectral

r e solution).



CHAPTER III

EXPERIMENTAL CONSIDERATIONS

A. Adaptation of the Michelson Interferometer

A submillimeter interferometric receiver may be con-

structed along lines very similar to the conventional optical

Michelson interferometer, except that the half-silvered mirror

and the compensating plate must be replaced by a beam splitter

suitable for submillimeter-wavelength radiation. Also, the fixed

and movable mirrors of the Michelson system must be of the front-

surfaced type, and the movable mirror must be driven by an ap-

propriate mechanism for operation in either the aperiodic or the

periodic mode of operation. The actual mechanical construction of

the Michelson interferometer considered in this paper will be out-

lined in the next chapter. The present chapter will deal with the

characteristics and problems of this general type of instrument.

B. Beam-Splitter Efficiency

It can be shown (Appendix IV) that the beam-splitter efficiency

in terms of the ratio of the power delivered to the detector under

conditions of zero path length difference to the incident power is

4Z
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given by 4 IrlR Iz IrT [2 where rR and rT are the complex voltage

reflection and transmission coefficients of the beam splitter. The

maximum efficiency (i00 per cent) of the beam splitter occurs when

]rR ]z = irT iz = 0.5. For most practical submillimeter-wavelength

beam splitters rR and rT are dependent upon the wavenumber, and

the maximum-efficiency condition, it if occurs at all, occurs only

at one particular wavenumber. For wire-mesh beam splitters the

wavenumber at which the peak efficiency occurs and the width of the

peak will depend upon the mesh coarseness, thickness and orienta-

tion; and in a dielectric-film type of beam splitter these factors

will depend upon the dielectric constant and the thickness of the film.

They will also depend upon the angle of incidence and reflection

(usually 45 degrees). The losses in the beam splitter will depend

primarily upon the beam-splitter material and the method of fabri-

cation. Due to the variation in the beam-splitter efficiency with

wavenumber it may be necessary to use several different beam

splitters in the instrument to cover the wavenumber region of inter-

est. When the beam-splitter efficiency is considered, the factor

4 ]rR Iz [rT I" must be inserted into most of the results of Chapter n.

For example, Equation (Z9) becomes

(55) QI = (v2 -v, )(41rR Iz ]r T iz) (i/watt-sec).

4 Z_ (ElY)ivz -rD (NEP)
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C. Grating Efficiency

The diffraction-grating type of receiver also does not deliver

all of the incident power in a given wavenumber region to the radi-

ation detector. Most of the losses in this instrument are due to

the dispersion of some of the radiation at the desired wavelength

into grating orders other than the one desired, which is usually the

first order. Even with special precautions the maximum efficiency

which can be obtained is on the order of ninety percent[ 26], and this

at only one wavelength. Therefore, comparable to the case of the

beam splitters in the interferometric receiver, it may be necessary

to use a number of different diffraction gratings to cover the wave-

number region of interest.

D. Fringing Effects in the Michelson Interferometer

The theory of Chapter II considered perfectly collimated radi-

ation entering the Michelson interferometer, which implies a point

source of radiation. Since this is, in general, not the case, it is

necessary to consider the effects of passing radiation from a source

of finite size through the collimating system and the interferometer.

For simplicity the collimating optics can be approximated by a thin

lens of focal length L as shown in Fig. 5. The radiation from
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Fig. 5--The collimating system and the radiation source.

a point located on the source {or input aperture} at the center-line

focal point of the optical system will produce collimated radiation

parallel to the optical system axis, while a point on the source at

a distance r from the center will produce collimated radiation at

an angle d_ to the optical system axis, where tan d_ = r/L.

Now consider the general case of a collimated beam of radi-

ation entering the Michelson interferometer at some angle _ with

respect to the optical system axis as shown in Fig. 6. The dotted

lines show the path followed by a single ray when the mirror dis-

placement, G, is zero, while the solid lines indicate the modifica-

tion made when G is increased to some finite value. The phases

of rays A and B are assumed to be equal at the constant phase-

front line. From the drawing one can see that

(56) q : sin _ (cm),
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II

Constant Phase Front

Recombination
Point - Both A
And 8 Shortened
By The Same

Amount

Movable Mirror Reflection-

New Path A' Is Longer Than A

Fixed Mirror
Reflection -

Relation Between
A And B
Maintained

Fig. 6--Effects of off-axis radiation upon the operation

of the Michelson interferometer.

which gives for the path-length difference between rays that

(57) _ - cos 4) cos 4) cos Z4)

z_)
=Ic°s4)I (l+cos

I°l= COS 4) (2 cosZ4)) = 2G COS 4) (cm).

Therefore, the effective path-length difference is dependent upon the

angle of the incoming radiation and hence upon the particular point

on the source from which the radiation originated. If a large source

were to be used the radiation from different parts of the source would

interfere to a substantially non-uniform degree, and if all of the
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radiation were refocused onto the detector a good reproduction of

the interferogram function could not be obtained at large values of

G. This would place a practical limit on the value of Gma x and

hence limit the resolution of the interferometric receiver. For

instance, let the source radius, r, be 0.8 cm and the collimating

system focal length 28.5 cm: d_max would be about I.6 degrees. If

the allowable variation in the path-length-difference phase shift of

the radiation at k = lO0 microns (OoO1 cm) is taken to be twenty

electrical degrees (I/18th o£ a wavelength) then

58 0.01
( ) [Y(OO)-y(20o)]- ._ -0.000556 cm

: 2Gma x[1-cos 1.6"] = 2Gmax[0.00039 ]

(cm),

or Gma x = 0.714 cm or 7, 140 microns, thus giving a minimum (Av)

of about 0.7 cm -1 . The wcrst case would occur when the maximum

variation in the path-length difference is 180 electrical degrees.

This would occur (for k = 0.01 cm) when [Y(0o) - Y(180o)] =0.005cm,

Gma x = 6.41 cm, and the minimum (Av) equal to 0. 078 cm -1 .
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E. Problems Characteristic of the Aperiodic

Mode of Operation

Although the aperiodic mode of operation of the interfero-

metric receiver is probably more simple from a practical stand-

point thanis the periodic mode, there are still a number of problems

which must be overcome. One of the primary problems is the ob-

taining of the value of the interferogram function at precisely the

desired values of the path-length difference or movable mirror

displacement. One way this may be done is by continuously recording

the interferogram function on a chart recorder and either manually

or automatically making tick marks on the paper at the spots where

a reading is desired. However, this necessitates the manual reading

of the chart to prepare the interferogram data for computer proces-

sing, and this is always time-consuming and a source of possible

error. By using digital recording techniques wherein the interfero-

gram function is sampled at the desired values of the mirror dis-

placement the process of preparing the experimental data can be

automated to a large degree.

In both of the above cases one is still faced with the problem

of accurately determining tl_e value of the mirror displacement.

This can be done in a number of ways. One method is to use mono-

chromatic visible light reflected off a corner of the main movable
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mirror and a small auxiliary mirror to form a visible interference

pattern. A photoelectric cell and a counter are used to count the

movement of the fringes past a fixed point as the mirror is

moved [9, 10]. Properly constructed this would probably be the

most accurate method, but also the most complex to build and use.

A second method involves the use of a precision mechanical gauge,

such as a dial indicator, to measure directly the mirror displace-

ment, and a third method involves the use of a well-constructed ratio-

arm assembly, wherein a rather large and easily measured move-

ment at the long end of the ratio arm produces a small movement of

the mirror.

It should be obvious that very rugged construction of the in-

strument is necessary to insure uniform movement of the movable

mirror and to eliminate as completely as possible any vibration or

wobble in the optical system. 1 All of the mechanical joints of the

system, while being tight, should operate easily and smoothly so that

no bending or twisting of the structural members results from large

frictional loading forces. A small amount of backlash in the system

can usually be removed by the proper degree of spring loading.

1 See Appendix V for a discussion of the required accuracy of

optical alignment.
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If, in the aperiodic mode of operation, the source of radiation

has a high equivalent black-body temperature the near infrared

and visible radiation entering the instrument may be many orders

of magnitude greater than the submillimeter radiation which it is

desired to measure. Since all of this radiation is chopped by the

radiation chopper it will all contribute to the output of the radiation

detector unless it can somehow be rejected or compensated for. If

a wire mesh of the proper coarseness for use in the submillimeter

region is employed as the beamsplitter, it will be found that much of

the near-lnfrared and visible radiation is scattered, much of it in the

general direction of the radiation detector. This scattered radiation

does not produce any interference phenomenon as the movable mirror

is moved, its net effect being to contribute a "constant" component to

the interferogram function which is now produced primarily by the

submillimeter-wavelength radiation. The average value of this

"constant" component can be balanced out by applying an appropriate

d.c. bias voltage to the recorder terminals in series with the output

of the synchronous rectifier. However, this does not eliminate any

fluctuations in the "constant" component, and these remain as noise

contributions to the interfer0gram function. These fluctuations result

primarily from the random fluctuations in the magnitude of the large

amount of visible and near-infrared power and from the increase in
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the detector NEP due to the greater level of radiation entering it.

Thus, it appears that introducing compensation after the radiation

detector or destroying the coherence of the near-infrared and visible

radiation are not the proper ways to eliminate or reduce this source

of noise; but instead one must totally reject the shorter-wavelength

radiation at some point before it enters the radiation detector.

This also leads to problems, for if a filter which passes only the

submillimeter radiation is placed between the source and the radiation

chopper the filter will be heated by the near-infrared and visible

radiation, and if it has any losses at all in the submillimeter region

it will radiate its own submillimeter spectrum into the instrument,

thereby confusing the measurement of the desired source of radiation.

If a thin filter is placed after the chopper, it will alternately heat and

cool as the radiation is interrupted by the chopper and will contribute

a confusing signal to the radiation detector. A thicker filter after the

chopper will remain at a fairly constant temperature, and its re-

radiation of energy will not be important, but its losses in the sub-

millimeter region will substantially reduce the desired output signal.

Eliminating the ill effects of shorter-wavelength radiation from the

instrument will be a difficult problem anytime that it is encountered,

such as when solar radiation measurements are being made; and
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each case must be considered individually with regard to the desired

validity of the spectral measurement and the required slgnal-to-

noise ratio.

Fellgett[5], in his optical instrument, used corner reflectors

in his modification of the Michelson tnterferometer and was able

to recover the radiation which in a normal Michelson instrument

would be reflected back out the input. He fed this radiation to a

second detector and subtracted the resulting signal from the signal

derived from the first detector. In this manner he was able to reduce

the effects of starlight scintillation upon the recorded interferogram

output. From Appendix IV, with unity power input to the Michelson

the power into the second detector is given by

(59)

where

Po2: IrRI_ + IrT14+ 2IrRI_IrT12[cos{zi.R-eT}lcosl.,-.21

-sin(2(8R-eT) ) sin(el -ez ) ] (watts),

r R IrRie jeR = ,= and I' T I I'T l e jST

and the power into the first detector is

(60) PDI = IrR Iz IrT 12 (Z + Z cos (el-ez)) {watts}.

For most beam splitters leR-eT I is approximately ninety electrical

degrees within the region where the efficiency factor 4IF R Iz I rT 12
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is relatively high. Therefore, one has for the difference in the two

detector signals that

(61) PDi " PDz = 2IrR Is IrTIs (cos (%-"5) +cos(%-%))

+(ZIrRI s IrTI s - IrRl'-IrTl') watts,

which is to be compared with the original detector signal,

(62) PDI = Z IrR Iz IrT Is (cos (e, -ez) + 1) (watts).

Two things have happended: the usable signal has been doubled and

the d.c. component, which can contribute nothing but noise, has

been eliminated or greatly reduced. However, the additional

radiation detector will contribute noise to the system, and whether

or not the output signal-to-noise ratio will be better or worse will

depend upon the relative magnitudes of the scintillation noise and

the detector noise. In order not to introduce errors in the measure-

ments and/or additional noise, the detectors must be as nearly iden-

tical as possible with respect to both spectral response and time

response.

Since scintillation noise can also be expected in the submilli-

meter region, a system such as Fellgettls could also be valuable at

these wavelengths if an ideal beam splitter were available for the
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entire region. However, since this is not the case (i.e., 1FRI

IrRl and 1OR-OTI _ 90 °) such a system would probably have little

advantage over the conventional Michelson system, although if a

beam splitter could be found which would scatter nearly equal

amounts of near-infrared radiation into each detector the system

might be useful for reducing the ill effects of this shorter wave-

length radiation. To the author's knowledge, such an arrangement

has not been tried experimentally.

Another method of reducing the effects of near-infrared and

visible radiation in the aperiodic mode might be to employ a rotary

radiation chopper which would chop the submillimeter radiation but

not the near-infrared or visible radiation. Such a chopper might be

constructed using blades made of common window glass (which would

not chop the radiation at wavelengths shorter than three microns).

F. Problems Characteristic of the Periodic

Mode of Operation

The comments made in the previous section on the need for

sturdy mechanical construction also apply to the periodic mode of

operation, only to a greater degree, for now one must also content

with the large accelerations which occur during the turn-around

period and with the need for maintaining uniform motion while the

mirror is moving in either direction. In order to minimize
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vibration, the mass of the moving parts should be kept as small as

possible. It may also be necessary to utilize some type of vibration-

dampening mountings to reduce the effects of vibration originating

in the drive mechanism.

The selection of a radiation detector for use in the periodic

mode is more critical than in the aperiodic case, for in the latter the

detector need only to respond to the on-off radiation chopping employed

there, while in the periodic case the detector must reproduce, with at

least some degree of faithfulness, the interferogram time function,

or at least the frequency components of this function which are of

interest. Therefore, while a resonant detector such as the Golay

cell may be adequate in the aperiodic case, a detector with a faster

response and less phase shift should be employed for the periodic

case.* Also, since the signal-to-noise ratio obtained in the periodic

case is inherently less than that of the aperiodic case, a more sensi-

tive detector is desirable for periodic-mode operation.

z Since only one audio frequency (usually in the I0 to 30 cycle-per-

second region) is of interest, it may at first seem that a narrow-

band (or resonant) detector and/or a narrow band preamplifier

would be desirable for the periodic case. This would be true if

correlation detection were not used to select the desired audio

frequency out of the interferogram time function, in which case

the phase shift and the time delay due to the narrow-banding would

be of little consequence. However, when correlation methods are

employed the phase shift and time delay cannot be tolerated.
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The selection of the desired audio frequency components from

the interferogram time function can be most easily accomplished

by multiplying the detector output with a reference signal (a cosine

wave or the sum of several cosine waves at the desired reference

frequency or frequencies) and passing the resultant product through

an integrator circuit. This is commonly called "correlation de-

tection" and the reference signal which is needed can be obtained

from the mirror-drive mech_:dsm. It is necessary to incorporate

mechanical adjustments for adjusting the phase of the reference

signal generator so as to be able to compensate for phase shifts and

time delays in the radiation detector and the electronic circuitry,

as well as for minor day-to-day changes in the mirror-drive system.

Also, any small amount of residual mechanical backlash present in

the mirror-drive system will appear as an effective time lag in the

interferogram function and it will be necessary to delay the phase of

the reference signal to compensate for this.

Near-infrared and visible radiation also causes some problems

in the case of periodic-mode operation. If allowed to enter the

radiation detector it will contribute its noise to the detector output

and also cause the NEP of the detector to increase. The effects Of

the noise appearing on the interferogram function are reduced by

the correlation detection process before they appear on the measured
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power spectral density, but of course the same thing occurs when

the interferogram function recorded in the aperiodic case is proc-

essed in the digital computer, so the periodic mode has no inherent

advantage from this standpoint. However, since only the submilli-

meter-wavelength radiation is modulated to any appreciable extent

in the periodic interferometer it is relatively easy to filter out the

shorter-wavelength undesired radiation with a filter placed between

the modulator and the detector, Even a very thin filter will remain

at nearly constant temperature, and since it comes after the modu-

lator any re-radiation in the submillimeter region will not _ppear as

part of the measured power spectral density.



CHAPTER IV

EXPERIMENTAL EQUIPMENT

A. General Outline

Figure 7 is a top-view schematic drawing of the submillimeter

interferometric receiver set up for operation in the aperiodic mode.

Microswitch Lead .Screw _ Slide
-"_ \ fFollower ff_r] /I Bushing s

Synchronous _ " -. 4 .. _l_-_r--' I Fo_llower

Fixed Mirror _ _s-_r_ II Rntin_L Bearing
_--X_plitter I_ "A-rm_ Blocks

I I
- - - able

• Detector I \_q I L/_©! I[_ _L._ Mirror

I /_,_Y I vl I / _" I_1 I [UJ I I_1 I ..-
" i r_oas

I _)) ] .-"_ I I M°voble , ,_'_" I

I "o" ] I_1 I Mirror 25_ _ _.Rotio-Arm
" _'_ I [_]_ Pivot Point

Black-B°dy_ -'_\ \ I \ '
Source / _J \.; Parabolic Clockw/rk

/ _::_.__, MirrorRotary Drive

Chopper

Fig. 7--Top-view schematic of the interferometer as

set up for ape,riodic-mode operation.
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The synchronous gearmotor turns a lead screw which causes the

follower block to move in a linear motion and to swing the ratio

arm in an arc. This in turn causes a linear motion of the

movable-mirror support. The ratio of the mirror-support move-

ment to that of the follower-block movement on the lead screw is

dependent upon the position of the ratio-arm pivot point. The

latter is adjustable on sliding ways. During an aperiodic test run

the pivot point position remains fixed, while during a periodic test

it moves slowly. A dial indicator is used to give a direct indication

of the position and movement of the movable-mirror support. This

dial indicator is calibrated in ten-micron units. A sawtooth cam

and a microswitch on the gearmotor lead-screw shaft are used to

provide fifteen reference pulses for each turn of the lead-screw shaft

(see Fig. 8). These pulses are used to trigger the digital paper-tape

recording equipment which converts the analogue output of the

radiation-detector system (Io(t)) to digital form and records it on

the tape for latter computer processing. Figure 7 also shows the

rotary chopper located in the radiation path just before the input

optics. A system of front-surfaced optics collimates the input

radiation and directs it to the interferometer. The output of the

interferometer goes to a detector assembly consisting of a
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Texas Instruments gallium-doped germanium bolometer and an ap-

propriate optical system [ Z7 ].

For periodic-mode operation the synchronous gearmotor and

the lead screw and follower combination are replaced by an

Archimedes cam and its follower, the camshaft being coupled into

a variable-speed drive located under the radiometer table (see

Fig. 10). Also mounted on the cam shaft is a drum to which a

photographic negative is attached. The negative bears a graphical

representation of the desired reference signal and this is converted

into an electrical signal by an exciter ]amp and photocell assembly.

The stroke of the cam follower is linear over a three-inch range

and the movable-mirror stroke ( and hence Nmax and the tuning of

the radiometer) is varied by changing the pivot-point position. This

is done in a linear manner by attaching a clockmotor drive to the

lead screw which moves the pivot-point bearing block. The clock-

motor then varies the position of the ratio-arm pivot point at the

proper rate as the test progresses.

All the critical rotary mechanical joints are made by means

of two opposed Timken tapered roller bearings which are slightly

preloaded to reduce backlash, and all sliding contacts are made

by means of Thompson linear ball bushings ° The normal mechanical

adjustments are made by changing the position of the ratio-arm
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bearing block on the cam-follower rods, the position of the similar

bearing block on the movable-mirror support rods, and either the

rotary position of the reference drum on the cam shaft (periodic

operation) or the position of the sawtooth cam on the gearmotor

lead screw (aperiodic operation).

Archimedes
Cam

Refe rence "
Drum

ip

Cam Fol lower Exciter Lamp Slide

Bushings

Photocell

Fixed Mirror

Detector

Assembly

Block-Body
Source

Springs

Beam Splitter

I

I,/ I
--#--f

i Movable
I Mirror

Roti

Clockwork
Drive

Follower

Rods

Bearing
Blocks

Movable
Mirror

Support
Rods

Ratio- Arm

=Pivot Point

Fig. 9--Top-view schematic of the interferometer as

set up for periodic-mode operation.

The optical system of the interferometer consists of a ZB. 5

cm focal-length off-axis parabolic mirror three inches in diameter

which collimates the radiation and sends it to the beam splitter

which is an electroformed nickle mesh mounted on a five-inch
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outside and four-inch inside diameter metal ring. The mesh sur-

face is pressed against a ground surface in the beam splitter

mount by eight screws which bear upon the back side of the metal

ring (see Fig. 10). Meshes with a line coarseness of from 500 to

80 lines per inch are used as the beam splitters. Both the fixed

and the movable mirror are four-inch square front-surfaced glass

mirrors of optical quality. Both the beam splitter and the mirrors

are supported on three-point spring-loaded screw adjustments which

are used to obtain the proper optical alignment of the interferometer

system.

The detector assembly, which is shown in Fig. 1Z is built

around Texas Instruments' low-temperature bolometer mounted in

one of their three-liter liquid-helium dewars. A light pipe three-

sixteenths of an inch in inside diameter is used to convey the radi-

ation from the outside of the dewar into the detector element. The

outside end of the light pipe is just behind the crystal quartz vacuum

window at the end of the tubular extension at the bottom of the dewar.

The dewar is mounted so that this tubular extension extends through

a plane mirror which is oriented at forty-five degrees to the in-

coming collimated radiation from the interferometer. The radi-

ation is reflected from the plane mirror to a five-inch diameter,
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Fig .  12--A view of the detector system. The collimated radiation is 
reflected from the 45-degree plane mirror  onto the spherical 

mirror at  the right, which focuses it upon the end of the 
tubular dewar extension which extends through the plane mirror .  
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three-and-one-half-inch-focal-length spherical mirror onto the

end of the light pipe.

The electronic system for the aperiodic mode is shown in

part (b) of Fig. 13 and the system for the periodic mode is shown

in part (a) of Fig. 13. The rotary chopper used to interrupt the

radiation in the aperiodic case also provides a square wave ref-

erence signal which is used in the synchronous rectification of the

radiation detector signal, employing the same multiplier (a tran-

sistor-driven Hall-effect device) as is used as the correlator when

operating in the periodic mode. The filtered output (in the aperiodic

case) is sampled, converted to digital form, and punched into an

eight-level paper tape, which can be read directly into an IBM

16Z0 computer which then prepares the data for input to an IBM

7094 computer which computes the Fourier transform.

I RADIATION _ _ _

DETECTOR

I °It !
RNPDUITT _ON'_/N'-__ FI'_ERDOR _ i

I ' "01 " I IMOVABLE" _ _ BEAM SPLITTER I I

RE FERENCF-_..,L J
I,,,i._ om,vEi-"_I_N_--L-- -

(PERIODIC) TO SHORTING SWITCHES

(TURN AROUND CUTOFF)

R_'Dit'T ION SYNC_+ONOUSL

INPUTDETECTOR_ 1 IDETECTOR'_I ii _i
I

RAOIAT O_ MIRROR I I

ROTARY [___BEAM SPLITTER

RADIATION MOVABLE MIRROR I I

CHOPPER

v I I
I SLOW SPEED DRIVE _ I

I MECHANISM | _i.--- -J

f I
L__ _,. _,.__J

REFERENCE SIGNAL

(o) (b)

Fig. 13--Block diagrams of the interferometric receiver

systems for (a) periodic-mode operation,

and (b) aperiodic-mode operation.
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In the periodic case the detector output is multiplied with

the reference signal derived from the reference drum mounted on

the cam shaft of the instrument, and the integrated output is a d.c.

voltage which is fed directly to a paper-chart recorder. The de-

flection of the recorder corresponds to the measured power

spectral density in the periodic case.

In both the aperiodic and periodic cases the TI bolometer is

supplied with a twenty-microampere bias current from a low-noise

precision power supply, and the signal from the bolometer is fed

into a tunable 1-1000 cps microvoltmeter which serves as a wideband

amplifier during periodic tests and as a sharply tuned amplifier

peaked up on the chopping frequency during aperiodic tests. The

output of the microvoltmeter is fed into the transistor power ampli-

fiers which drive the Hall-effect multiplier. An integration time of

two to six seconds is used following the multiplier, this being satis-

factory in most instances unless the signal-to-noise ratio of the

detector output is quite low. A longer integration time requires,

of course, that the data be taken at a slower rate. With a one-

second integration time it was found that the TI detector had a

noise power of about _X IO -11 watt (based upon a measured NEP

of about Z X i0 -II watt per cycle of audio bandwidth). The system

is also arranged for use with a Golay-cell radiation detector if this
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is so desired, but with a resulting loss of signal-to-noise ratio.

B. Operation of the Interferometric Receiver

1. The aperiodic mode. In the aperiodic mode the pivot

point is first positioned to produce the desired maximum displace-

ment of the movable mirror when the gearmotor lead screw is

turned the desired number of turns o Then while watching the d.c.

output of the detector system on a chart recorder the lead screw is

slowly turned until the optical mirror position is reached, at which

time the path-length difference is zero and the detector output (the

interferogram function) reaches its maximum value since all of the

radiation from both beams is in phase. The interferometerls optics

are now aligned by adjusting the tilt of the beam splitter and the

two mirrors until the maximum output is obtained. Also at this

time the sawtooth cam is adjusted to one of the triggering points

and the lead screw is backed off few turns and the gearmotor con-

nected and turned on. Just before the mirror position is again

reached the digital recording equipment is placed in operation and

from this point on the operation of the system is entirely automatic_

with the interferogram data being recorded on the punched paper tape.

It is best to have the adjustment of the pivot point position such that

for each turn of the lead screw (each fifteen data points) the
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displacement of the movable mirror is some round number which

it is mathematically convenient to work.

Z. The periodic mode. Initial adjustments in the periodic

mode are best made by operating the instrument as if in the aperi-

odic mode, only with the cam being used in place of the gearmotor

and lead-screw drive. The mirror position is found by turning the

cam slowly while observing the interferogram recorded on the

chart recorder. The mirror position should be reached with the

cam at the half-way point and the movable mirror should then re-

main at the mirror position while the position of the ratlo-arm

pivot point is varied. It may be necessary to move the bearing

block which connects the ratio arm to the movable-mirror drive

rods until this condition is reached. After these adjustments are

made the electronic system is connected for operation in the peri-

odic mode and the cam drive started at the normal speed. An

oscilloscope is used to observe both the detector signal and the

reference signal just before these enter the Hall-effect multiplier,

and the two bearing blocks and the position of the reference-signal

drum on the cam shaft are adjusted until the detector signal re-

mains in phase with the reference signal for all settings of the

ratio-arm pivot point. These three adjustments are all interde-

pendent, but in general it will be found best to adjust the bearing
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block on the movable mirror support rods at short strokes of the

movable mirror, and to adjust the bearing block on the cam follower

rods at long strokes of the movable mirror {i.e., large _(max}"

One of the new storage-type oscilloscopes will be found to be of

great value in carrying out these adjustments. Once the adjust-

ments are completed the ratio-arm pivot point is adjusted to the

zero-stroke position and then moved out again to the maximum-

stroke positionwhile the number of turns of the lead screwwhich posi-

tions the pivot point are counted. While at the maximum stroke position

the length of the linear stroke of the movable mirror (i. e., _(max}

is measured and recorded. The clockrnotor drive is then engaged

to the lead screw and the system output is recorded as the ratio-

arm pivot point is slowly moved back towards the zero-stroke

position. This recorded output will then be the measured power

spectral density as a function of the radiation wavelength. As an

aid to calibrating the chart it is helpful to record a tick mark at

each completed turn of the lead screw which positions the pivot

point.
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C. Estimation of [ATsmin ]

The minimum detectable change in the source temperature,

[ATsmin], will be calculated for an aperiodic interferometric

receiver having design parameters approximately equivalent to

the one just described.

The first step is the estimation of the minimum change,

[A Ei(V)min], in the input power spectral density which the receiver

is capable of detecting. It is assumed that this occurs when the

signal-to-noise ratio becomes unity in Eq. (Z3). Then, considering

also the effects of the beam-splitter losses, one has that

4 (NEP)
= (watt-cm).

(63) [Ami(v)mi n] f_t( 41rR Iz II_T Iz)(AV)l

Whenever a test source is being used under laboratory conditions

quite a long length of time can be taken to make the desired meas-

urements without system stability becoming a problem. For example,

assume that T t = two hours = 7Z00 seconds, and let the NEP of the

detector (including all of the filter losses, etc.) be about 10 "I°

watts. Then at the wavenumber where 41rR Iz IrT Iz is of the order

of unity, [ AEi(u)min] will be
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(64) [AEi(v)mi n]

4{10 -l° )

47z00 (i)(0.65)

7.26 × 10 "lz (watt-cm),

where (Av)i has been taken to be 0.65 cm "l . In the case of the

periodic instrument the integration time is normally of the order of

four to six seconds, which would give an increase in the minimum

detectable change in the pox_ er spectral density. However, at the same

time the wavenumber bandwidth of the periodic instrument is much

wider (probably greater than 100/30 " 3.3 microns at k = 100 microns)

which would tend to decrease the minimum detectable change in the

spectral density. As a result, [AEi(v)min] in the periodicpower

case would probably be less than seven times greater than

[AEi(u)min] in the aperiodic case.

Once [AEi(v)min] has been determined, one needs only to con-

sider the geometry of the instrument optics, the mean source tem-

perature, Ts, and the wavenumber at which the radiation is being

measured to arrive at an estimate for [ATsmin ]. Let the inter-

ferometer, its detector_ and its test source be schematically

represented by Fig. 14 where the input and the output mirrors

are represented by lenses of diameter D and focal lengths 5i and

5o respectively. Let A s be the area of the source and A D the area
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Source _,_

( Area = AS] Input
Mirror

t
D Interferometer

L

_Radiation

Output Detector

Mirror (Area :Ao)

Fig. 14--Schematic representation of the

optics of a laboratory test system

for determining [ATsmin ].

of the radiation detector,

!

the source be A D, where

and let the detector area imaged upon

D _o/

The solid angle into which the source radiates is denoted as

(Ag2)I = wDZ/4(5i) z , and to the first approximation the radiation

which the source radiates into this angle reaches the detector in

its entirety. It i§ assumed that (Zhlq)l is small enough that the

cosine factor appearing in the Planck radiation law is approximately

unity. One then has, from Eq. (4) in Chapter l,
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(66) [2_Tsmin] = _ck [ A Ei(v)mi n] (*I<),

where _ is given by Eq. (5), where l_ in this case becomes
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_2

(67) r =
ZAs( _ )I

, , <A sand where A s may be replaced by A D if A D

If the instrument described in the preceding sections of this

chapter is now analyzed by the above method, using an operational

wavenumber of I00 cm "l (k = 100_) one obtains the following

parameters :

and

[AEi(v)min] " 7.3 × I0 -Iz watts

5 i : Z8.5 cm

50= 8.9 cm

AD=- _ (0.475) 2 = 0.178 cm z

As='i {1.59) a = 1.98 cm a

A'D= k--g-_(za"5)'- (0.178) = 1.827 cm z

(0.01) z
r = = 4.78 × 10 -4

2(1.827)(0.056)

Tr (7.6z) 2

4 (Z8.5) z
= 0. 056

Let T s = 500°K. Then from Fig. 1 one finds for k = 100tLthat

T]_ unity, and one has
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(68) [ATsmin] = (1)(4.78 X 10"4)(Z × I0 "41)

(3 X 101°)(1.38 × I0 "zB)

=8.6X 10 -3 (°K).

Thus, the interferometric instrument is theoretically ca-

pable of detecting a smaller temperature change than the normal

operating fluctuations in the temperature of the black body test

source° Of course, this sensitivity figure does not take into ac-

count atmospheric absorption of the radiation and the fluctuations

thereof, the possible drift in the electronic equipment over a long

period of time (two hours), digitizing errors, etc., all of which

would serve to reduce the sensitivity of the instrument. For in-

stance, itwas found that the digitizing equipment alone produced

about a one percent peak-to-peak error in the recorded inferrer.-

gram output (based upon the inferrer.gram value at _ = 0). The

effects of such an error, which is proportional to the total power

received by the instrument, is discussed in the next paragraph.

The peak value of the inferrer.gram is due to the total power

passed by the beam splitter and the radiation filters and which is

detected by the radiation detector, or

(69) lo(y) max = _ El(v) dr= Ei(v) lav (Vz "vl)
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where El(v) [av is the average value of Ei(v) {which now is as-

sumed to include the factors of beam-splitter efficiency, radiation

filter attenuation and detector response) and where (v z -vl) is the

effective region over which El{v) lay exists. Let the rms noise on

the interferogram due to digitizing error, recorder error, etc,

be a certain fraction, U, of Io(y) Imax. Then the mean-square

noise on the interferogram is equal to U z [Ei(v)lav(Vz-v,)] 2 (watts) 2 •

Assume now that this has a uniform spectral density from v = 0 up

to the maximum possible v consistent with the rate of data sampling.

If the spacing between data points is (Ay) then this value of v will

be I/Z(Ay). Thus the mean-square noise spectral density will be

equal to U z [Ei(v ) ]av{VZ -v I )]z {Z) (Ay) (watt) z -cm. If this is related

to the frequency (in CPS) density of the mean-square voltage noise

at the detector output, one has, since s = dy/dt = Ymax/Tt = f/v,

U z [Ei(v) lav(V z-vl)]z(z ) (Ay)(_)(I/s). This is the mean-square

noise voltage density of the variable N(t ) in Eq. (Z0) of Chapter If.

As before, the operat/on of Eq. (Z0) is equivalent to passing

4N(t)T t through a bandpass filter of noise bandwidth I/ZT t and

maximum gain of 1/2 . Thus, the mean-square noise density on

the output signal will be (I/Z)[4_TtU Ei(v)[av(VZ-v, )]' (Z)(AN)

(I/s)(I/ZTt) , and the rms noise voltage density will be:



78

4
(70) N(f) -- -- Uz Ei(v) lav _ (vz "vl )_ Tt(A_/)s

Since from Chapter II the expression for the signal voltage density

was SI(f) = _ El(v)lay/2s one has for the noise-to-signal ratio on

the output due to any noise which is a constant fraction of the

interferogram:

(71)
N(f) = (Z_ UEicv) av_ (vz'Vl)i Tt(A_) )×( 2s )
st(f) s _ El(v)lav

= 4,[Z U (vz -v I ) J (A_/) _'max "

Applying Eq. (70) to the instrument just described where

U = _1 (0.707)(0.01) = 0.0035, where (A_/) = Z0 X 10 -4 cm, where

_/max = 1.56 cm, and where (v z-v 1) is taken to be 70 cm "l one has

(7Z) = 41"-Z(3,5)10-' (70)_

= 775 × 10-4 = 0.0775.

Z0" 10 -4. 156

Thus, if, for instance, the signal itself was due to a difference of

200°C between the source temperature and the chopper blade tem-

perature, [ATsmin] due to the type of noise just discussed would

be about 15.5°C. This is much greater than the [ATsmi n] due to

the radiation detector noise or some other fixed-level noise source

in the system. It could be reduced by reducing the relative error

in the digitizing system, by eliminating all of the radiation except
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that of interest (i.e., reducing (v 2-v 1}}, by sampling the inter-

ferogram data more often {i.e, , by reducing &y)_or by broad-

ening the instrument response function by decreasing Ymax"

Another method of reducing this noise would be to reduce the

detector signal itself by letting the chopper blade temperature

more closely approximate the source temperature until the point

is reached where the fixed noises in the system (such as the de-

tector noise) become approximately equal to the noises which are

proportional to the input signal.



CHAPTER V

EXPERIMENTAL RESULTS

A. Preliminary Tests

Preliminary tests on the instrument indicated a number of

problem areas which had to be cleared up before satisfactory data

could be obtained.

For instance, if the path-length difference, hi, is changed very

rapidly when y is close to zero, the value of Io(y) will also change

very rapidly, and because of the long time constants in the radiation-

detection system and the delay in the data recording system Io(y)

will not be recorded accurately. On the other hand, a rate of change

of y which would have given satisfactory results in this region would

have let to an excessive time requirement for the test as a whole.

A satisfactory compromise was obtained by manually rotating the

gearmotor shaft very slowly while y was in the vicinity of zero and

then using two successively higher motor speeds as y became larger.

It was also found that the effects of the error in the digital recording

equipment could be reduced by applying a small, stable, direct-

current bias just ahead of the digitizing unit, and then increasing
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I

l

l

the system gain and adjusting the bias voltage until the interfero-

gram output covered practically the full range of the digitizing

unit. Similarly, on the preliminary tests in the periodic mode

it _as found that the best results could be obtained if the syn-

chronization between the interferogram function and the reference

signal was monitored continuously on an oscilloscope and slight

adjustments made in the position of the movable mirror so as to

I

I
I
I

accurately maintain the synchronization throughout the entire

test.

B. Aperiodic Tests

The aperiodic tests were conducted using four different beam

splitters (500, 200, IZ0, and 80 lines-per-inch respectively), all

I

I
I

I
l

I

of which were oriented such that the mesh lines ran at a forty-five

degree angle to the horizontal. With the exception of the test using

the 120 LPl-mesh beam splitter, all of the tests were conducted

using a 0. 054-inch thick black polyethelene filter in the radiation

path. The purpose of this filter was to reduce the amount of near-

infrared radiation reaching the detector. The path from the radi-

ation source to the detector was about two meters long, and the

measurements were made under the conditions of YZ to Z5 percent

relative humidity and 7 5 to 77 degrees farenheit temperature.
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The first two tests were conducted using a _/max

meters, which gave a (Av) I of about 0.64 cm "1 ,

tests were conducted using h'max

gave a (Av)i of about 0.58 cm "1 .

of I. 56 centi-

and the next two

of 1.7Z6 centimeters, which

The resulting data are pre-

sented in Figs. 15 to 18 and in Figs. 19 to 2Z, respectively. The

data thus obtained were further processed for the first two cases

(the 500 LPI- and 200 LPl-mesh tests) in the manner described in

the section of Chapter II dealing with response-function improve-

ment by means of adding together three basic response functions.

These data are presented in Figs. 23 to 26 inclusive, where the

passband of the improved instrument response function is i. P8

cm -I . In order to obtain a comparison between an improved and an

unimproved instrument response function of the same bandwidth the

interferogram data from the 500 LPl- and 200 LPl-mesh tests were

processed only out to Nm = 7800 microns(0.78 cm) and the resulting

power spectral densities (now with (/kv)1 = I. 28 cm "I ) plotted as

Figs. P7 to 30 inclusive. Finally, an attempt was made at calcu-

lating the spectral density at points spaced closer than [dr] = I/g_/max-

In this case the calculation was made at wavenumber values separated

by [dv] = I/8 _(max after first subtracting the constant component

from the interferogram function. These data are presented in Figs. 31

and 32. Figure 31 also shows the results of an attempt to solve the
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matrix equation (53) for Ei(v) (dotted line). Due to the core-

storage limitations of the computer, these data could be obtained

only over small wavenumber regions on one computer run, and

the data presented as the dotted line in Fig. 31 represents a com-

posite of the data from several such computer runs.

A comparison of the data obtained by the aperiodic method

with the data obtained by Yoshinaga et al. [Z8], Oetjen et al. [Zg],

and Yaroslavsky and Stanevich[ 30] with conventional grating-type

monochromators indicates very good agreement with respect to

the location and the general shape of the various absorption and

transmission bands over the wavenumber regions where the ef-

ficiency of the various individual beam splitters was good. About

the only major discrepancy was the appearance on the experimental

data of two moderately-small absorption lines at about 87 and 88

microns respectively which do not appear in the references, al-

though Reference [Zg] does indicate a very shallow and broad ab-

sorption region in this location. Also, on Figs. 19 to ZZ inclusive,

which were calculated and plotted on a slightly different scale than

the other tests (due to the different _/max used), the spectral curve

seems to be shifted very slightly to the left at the higher wave-

number values. This may have been due to a slight error in

determining the correct value of Nmax"
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An examination of Figs. 15 to 22 shows that the 500 LPI

mesh has a fairly sharp efficiency peak near 90 microns, while

the 200 LPI mesh has a much broader peak near 250 microns

wavelength. On the other hand, the 120 LPI and the 80 LPI

meshes did not appear to have any definite efficiency peaks. Both

of the latter tests are more noisy due to the higher system gain

which was necessary because of the lower beam-splitter efficien-

cies. The effect of removing the black polyethelene filter is

clearly shown in Fig. Z0 by the increased output at wavelengths

shorter than 80 microns as compared to the other three tests in

which the filter was used.

Some negative output is in evidence on all of the output data

charts. This results from two sources - the negative sidelobes of

the instrument response function and the imperfect adjustment of

the Michelson optical system. The latter reduces the height of the

central peak in Io(7) which occurs at 7 = 0 and results in a slight

negative shift of all of the output data points. A similar effect will

also occur if the path-length difference is changed so rapidly in

the vicinity of _( = 0 that the full magnitude of the central peak is

not accurately recorded.
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By comparing Figs. 23 to 26 with Figs. 15 to 18 one sees

that improving the instrument response function by adding together

three of the basic response functions leads to a smoother power

spectral density curve, along with a slight decrease in the relative

magnitude of the negative portions of the curve as compared to the

positive portions. These changes result both from the doubling

of the bandwidth and from the squaring up of the main peak and

the reduction of the negative side lobes of the instrument response

function. However, it should be noted that many of the smaller

and narrower absorption bands which were present in the original

data have almost disappeared completely in the improved data.

When the improved dam (with (Asw)i = 1.28 cm -1 ; Figs. 23 to

26} is compared with the dam obtained by processing the interfere-

gram function only out to Yrnax = 7800 microns instead of Ymax =

15,600 microns (Figs. 27 to 30} one sees that the former leads to

a smoother power-spectral-density curve and again a slight re-

duction in the relative size of the negative-going portions of the curve.

Also, the improved response function de-emphasizes the small nar-

row absorption bands which the basic response function, because of

its large negative side lobes, tends to over-emphasize.

The dam obtained by subtracting the constant component of the

interferogram function and calculating the measured power spectral
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density at wavenumber values separated by dv = 1/8 _max rather

than dv = I/2 Ymax (Figs. 31 and 32) gives much more uniform-

appearing curves than those in Figs. 15 to 17. Also, some of the

very slight absorption lines which were only hinted at on Figs. 15

to 17 are more clearly developed on Figs. 31 and 32. As before,

almost all o£ the absorption bands which appear coincide with

those observed in references [28, 29, and 30], the major ex-

ception again being the two bands on Fig. 31 which appear at 87

and 88 microns. The data obtained as a result of the solution of

the matrix equation on the digital computer (dotted line on Fig. 31)

at first glance appears to be much noisier than the unprocessed

data (solid line). This is to be expected, since the theory predicts

that one must trade signal-to-noise ratio for an increase in the

resolution (about four times in this case). It is interesting to note,

however, that most of the dips which occur on the dotted-line curve d

correspond with absorption bands either seen by other experimenters

or predicted by the theory[28,29, 30, 31, and 32]. The two large

unexplained absorption bands which occur at 77 and 78 microns are

broken into three and two separate apparent absorption bands

respectively by the process of solving the matrix equation.
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C. Periodic Tests

Figures 33 and 34 show the periodic test data obtained using

a relative instrument resolution of v/(_V)p = 7.5. The curves on

Fig. 33 marked "fast scan" show the results of tests made using

a reference frequency of about 13 cycles per second while the

curves marked "slow scan" represent data taken when the instru-

ment operating speed was slowed to where the reference frequency

was just over 8 cycles per second. On Fig. 34 the IZ0 LPl-mesh

test was run with a 13 cycle-per-second reference signal and the

80 LPl-mesh test was run with a 9 cycle-per-second reference

signal. Although the resolution of the instrument was quite low

when obtaining the data presented in Figs. 33 and 34, the general

location of the peaks and dips corresponds to the major regions of

transmittance and absorption in the data of other experimenters.

Figure 33 indicates that the 500 LPI mesh has a beam-splitter-

efficiency peak near 85 microns, while the ZOO LPI mesh has its

efficiency peak near Z30 microns wavelength as in the aperiodic

case, but Fig. 34 (the results of the IZ0 and 80 LPl-mesh tests)

indicates a tendency for the output to peak up at less than I00

microns. This is a result somewhat similar to the absence of an

expected large efficiency peak at longer wavelength (approximately
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370 microns for the IZO LPI mesh or 550 microns for the 80 LPI

mesh), and may be due to some extent to a dropoff in the source

intensity and/or greater atmospheric absorption at the longer

wavelengths. Also, neither of these two tests were conducted

with a black polyethelene filter in the radiation path, while the

200 LPl-mesh periodic test (the only one which did not peak up

at wavelengths greater than I00 microns) was conducted using

such a filter.

Figures 35 and 36 show the results obtained with a relative

resolution of v/(Av)p = 30. The 500, ZOO, and 120 LPI-mesh

tests were conducted using a 14 cycle-per-secDnd reference sig-

nal. No radiation filter was placed in the optical path for any of

the tests. As a result of the latter condition, all four of the tests

resulted in the measured power spectral density having an output

which peaked up at wavelength shorter than i00 microns. Some

difficulties were experienced with the 80 LPI-mesh test which in-

validated the data for wavelengths longer than about I00 microns;

consequently these data were not plotted. A comparison of the data

obtained on these periodic tests with that of other experimenters

showed very good agreement in the location of the transmlssionand

absorption bands, particularly when compared with the results
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published by Yaroslavsky and Stanevich [ 30] who apparently used

an instrument having about the same resolution.

The last group of periodic data (Figs. 37 and 38) was taken

using an improved response function obtained by combining three

reference frequencies. The resulting relative resolution of the

improved response function was v/(AV)p = 15.5, and the tests

were run with a center refezence frequency of about 15 cycles per

second with no radiation filters in the optical path. Again, all of

the tests restdted in a measured power spectral density which

peaked up near 85 microns, although the 700 LPI-mesh test did

have a somewhat smaller peak in the 210-Z35 micron region.

Good agreement was again obtained with the results published in

the literature, although the resolution of the instrument seemed to

be somewhat better than the predicted value of 15.5. There seemed

to be little real difference between the data shown in Figs. 35 and 36

and that shown in Figs. 37 and 38 except that the results in the

latter case appear to be more "solid" (i. e., the absorption bands

did not plunge as near the zero axis as in the former case) and

some of the curves (the 1Z0 LPI-mesh results in particular) seemed

smoother and less noisy.
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33--Spectral density data obtained on periodic tests using

500 LPl-mesh (solid line) and Z00 LPl-mesh (dotted line)

beam splitters; v/(AV)p - 7.5. A black-polyethelene

filter was used on the Z00 LPl-mesh test, but

none on the 500 LPl-mesh test.
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Fig. 34--Spectral-density data obtained on periodic tests using

1Z0 LPI-mesh (solid line) and 80 LPI-mesh (dotted line)

beam splitters; v/(AV)p : 7.5. No radiation
filters were used.
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Fig. 35--Spectral-density data obtained on periodic tests using

500 LPI-mesh (solid line) and Z00 LPl-mesh (dotted line)

beam splitters; v/(Av)p = 30. No radiation
filters used.
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instrument response function and no

radiation filters.
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D. Minimum Detectable Temperature Change

The basic data (Figs. 15 to ZZ) were examined to obtain an

estimate of the signal-to-noise ratio and [ATsmin ] . The maximum

spectral density in each test was assumed to be due to a change of

200°C between the chopper blade temperature and the source

temperature. The 500 LPl-mesh data had an apparent noise-to-

signal ratio of about 1.2 percent over all of the spectral region.

This was estimated in two ways. First, since black polyethelene

and crystal quartz filters were used it was assumed that there was

little radiation near 50 microns wavelength and consequently all of

the variations in the measured power spectral density in the vicinity

of 50 microns were considered to be noise. Secondly, in the portion

of the spectrum where Emi(v ) was large any small dips not cor-

responding to known absorption lines were assumed to be noise.

Based upon thesemethods [ATsmin] was estimated to be less than

2.5°C. This is considerably smaller than the 15.5°C estimated at

the end of Chapter IV due to digitizing errors. The discrepancy

may be due to the digitizing error not being as large as originally

believed, or may be due to it not having a uniform spectral density

as was assumed in the analysis of Chapter IV (i.e., the noise may

be concentrated at some frequency not corresponding to the wave-

number region considered here).
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The noise-to-signal ratio in the ZOO LPl case was about 1.7

percent giving a [Z_Tsmin] of about 3.5 °C, while for the IZ0 LPI

and 80 LPI cases [ATsmin] was estimated at 5°C and 5.5"C

respectively. The data obtained by calculating the power spectral

density using the improved instrument response function (Figs. Z3

to Z6) led to an estimated [ATsmin ] of about Z°C.



CHAPTER VI
CONCLUSIONS

In this dissertation it has been shown that the interfero-

metric receiver is a suitable means of determining the spectral

characteristics of a radiation source. In general the aperiodic

mode of operation is the most efficient and gives the best results

when the information which is desired is a high-resolution meas-

urement of the power spectral density over a wide range of wave-

numbers. The periodic mode of operation is best applied to making

broadband measurements centered upon from one to several values

of wavenumber, but is not as good as is the conventional grating

monochromator.

In the aperiodic mode of operation a resolution comparable to

that of a grating-type instrument can be obtained and the operation in

this mode using a relatively weak black-body radiation source has

yielded results which compare quite well with those obtained by

other experimenters using gratlng-type instruments and platinum-

strip or mercury-arc radiation sources. A relative resolution of

more than 100 has been obtained with the present instrument, but

this could easily be increased by another order of magnitude through

116
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the use of a smaller and more intense radiation source and/or

longer focal length optics, or by relaxing the very stringent

limitations which were placed upon the permissible diffraction

effects. Operation in the aperiodic mode is quite simple to

achieve, and an instrument designed to operate only in this mode

could be quite ruggedly and simply built, would be lightweight,

and have low electrical power consumption. Completely auto-

matic or remote-control operation would be easily obtainable, and

the output could be quite easily adapted to telemetry methods. By

careful selection of the mesh used for the beam splitter the instru-

ment coulcl be made to cover a wide wavenumber region without the

necessity of changing to another beam splitter.

The periodic mode of operation is much more difficult to

achieve and requires more attention during the recording of test

data (at least if one is scanning through a wavelength region) than

does the aperiodic method. The construction must inherently be

heavier and the power consumption higher because of the large

mechanical accelerations involved. Probably the most useful

application of the periodic method would be in the continuous

monitoring of some radiation source or path at one particular

wavelength where the magnitude of the received radiation was

desired to be known as a function of some other parameter which
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varies with time. It was also found that some of the mechanical

problems which are inherent in the periodic mode of operation

can be compensated for by providing both phasing and time-delay

adjustments between the moving interferometer mirror and the

reference signal generator, and by providing signal blocking during

the mirror-motion turn-around period[ Zl] .

Both modes of operation are amenable to attempts to improve

the quality of the resulting experimental data by means of improving

the instrument response function. In the aperiodic case this is done

in a digital computer at any convenient time after the experiment

is run and the interferogram data is taken. Since the same inter-

ferogram data may be processed using several different instrument

response functions it is possible to compare several sets of output

data made with different signal-to-noise ratios and resolutions

which have all originated from the same input data, and to adjust

the instrument parameters ex post facto to obtain the most valuable

output data for a specific purpose.

This dissertation project has shown that both the aperiodic

and the periodic modes of operation of the interferometric receiver

may be obtained in practice, and that from the theoretical and

practical standpoints each mode has its own assets and problems.

The method of response-function improvement which was proposed
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in the theory was shown to be experimentally achievable with

good results in the aperiodic mode but with only fair results in

the periodic mode. Some of the problems of periodic-mode

operation have also been solved. In conclusion, one can say

that the interferometric receiver, in one or the other of its two

basic forms, should make a useful radiometer receiver for a

number of various applications in the submillimeter wavelength

region.



APPENDIX I

RELATION OF [ATsmin] TO [APmin]

The radiant power emitted per unit of black-body surface per

unit of solid angle is

C

(_-I) P_×- 4=
watts

YkAk _cm 2 sterad./

where _k is Planck's radiation density factor. If the radiation being

measured is in the centimeter-wavelength region where ch/kk << T s

for most sources being observed (i.e., for T s > 10°K atk=l. Z5 cm),

pkAk becomes

(I-2) pkAk = ZkcTs Ak ( watts

k 4 _m 2 sterad. /

However, this formula is not necessarily true for the submillimeter

region where the quantity ch/kk may be several hundred degrees

Kelvin. In this case (i. e., where T s

equation becomes

< 500K and k< 3 mm) the exact

/ \

_ ZcZh n_ / wattsCI-3) p_n×
kN--- ch/kkTs _k m z sterad./ .(_ -1)
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The total power in a wavelength increment Ak incident upon

an effective antenna area Ae(9,_) located a distance L s from a

source of incrememtal area de

given by

located at the angles 0 and _ is

do-

(1-4) dP = pkAe(e,_) _r- Ax = PkAe(e,_) d_ Ak (watts),
S

where d_2 is the solid angle subtended by the source de when

viewed from the receiving area. An extensive black-body source

can be considered as the sum of the small incremental areas de-

noted by de. Therefore, integrating the above equation gives the

total power received from an extensive black-body source over a

range of wavelengths k to (k +AK):

where PN is assumed constant over ZXK and where T s = Ts({) ,_) is,

in general, a function of 0 and d#, the direction angles. Compare

this to a similar approximate equation for the centimeter-wavelength

region where ch/kk << T s:

ZcZh(Ak)X YZ_2 Ae(e'_)"(I.5) P - s £ch/KkTs . d_ (watts),( i)



122

(I-6) , CAe(O,¢) Zk Ts(e,_ ) (Ak)P= . k4 _']

S_ cAe(0,¢) 2,k Ts(e,¢) (Av)= kZ d_ (watts),

From antenna theory, the gain function (referred to an iso-

tropic source) of an antenna in a particular direction is given by

(_-7)
41T

Ca(O,_p) = _Z" Ae(O,¢)

where Ae(O,_b) is the apparent area of the dish antenna when viewed

from the direction given by O and ¢. Thus, one may substitute for

Ae(O,¢) in (I-5). This leads to

(I-8) Ae( o ¢) _ - G(O ,¢) _ (cm) z

and

cah(Ak) _ G(O, ¢)
(1-9) P - Zwk3 Ae (ech/kkTs(8,_ ')-I)

d_ (watts),

where cI_= ded¢. In the centimeter region this becomes

ck(A,+)(I-i0) P - Zw Ts(O,¢) O(O,¢) (watt s ).

.Now, if the angular beamwidth of the antenna is less than

the angle subtended by the source, Ts(@,¢) will be approximately
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I

I
I

I

I

constant over the range of integration. If O(e,_ ) is integrated

over the entire beamwidth, letting

;Z G(e,¢) c_ = 4_,

the equation which relates the input power to the receiver over a

range (AA) to the equivalent black-body temperature of a source

which is larger than the antenna beamwidth will become

I

I
I
I

(I-11) P = Zcz h(ZXk) (watts).

k3 (ech/kkT s _ 1)

For the centimeter region this reduces to

(I-lZ) P = ZkcTs(AV ) (watts).

In the preceding derivation it has assumed that radiation of all

I
I

I
I

I

polarizations is being received and detected. If the antenna-receiver

input combination is such as to accept only one polarization, and if

the received signal (noise) has random polarization, then (I-11) and

(I-lZ) must both be divided by two.

hc z (zxx)
(I-13) P =

k'(e ch/kkTs -1)

This gives

(watts),

or

(I-14) P = ckTs(AV ) (watts).
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Comparing the general equations which must be applied in the

submillimeter region with the approximate equations for the centi-

meter region it is seen that for a centimeter receiver of given

bandwidth the power input to the receiver may be related to the

black-body temperature of the source by a constant which is in-

dependent of the wavelength of the radiation being received, but

that for the submillimeter case this relationship is a complex one

involving the wavelength as a parameter. This is especially

evident if the minimum observable change in the black-body tempera-

ture is expressed in terms of the minimum detectable change in

the receiver input power. For the centimeter case, from Eq. (1-14)9

(I-15) [ATsmin ] - (APn%in) (°K),
ck(Av)

where [APmin] is the minimum detectable power in the wavenumber

region (_v), while for the submillimeter case, from Eq. (I-13),

(1-16) [ATsmin ] = kZkTZ

c_nz(Av)

(e hc/kkT_ 1)z

(ehc/kkT)
[APmi n] (°K).

While (1-15) for the centimeter region is a simple propor-

tionality relation, the general equation (I-16), which must often be

applied in the submillimeter region for small values of Ts, is a

complex expression which depends upon both the wavelength, k,

I
I

I
I

I
I

I
I

I
I

I
I

I
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being measured and the equivalent black-body temperature, T s,

of the source. It is easily seen that (I-16) reduces to (I-15) when

hc/kkT << 1. Actually, if ehc/kkT can be approximated by

h z c z h 3 c 3
1 + hc + k z T z +kk---T 2k z 6k3k 3 T 3 '

then (I-15) is a good approximation. This occurs for wavelengths

greater than approximately 0.2 millimeter if the temperature

being measured is over 100°K.

A submiLlimeter radiometer receiver having the same [AlmmL _

as a microwave radiometer reciever would not be able to detect as

small of a change in the black-body source temperature as would

the microwave receiver. The ability of the submillimeter receiver

to detect a change in T s is related to its ability to detect a change in

the input power by the factor N = ck(ATs)(Av)/(AP). This is plotted

in Fig. I in Chapter I.

In the foregoing it has been assumed that the gain and the

beamwidth of the antenna are determined primarily through diffrac-

tion effects by the antenna size and the wavelength of operation. If

a coherent receiver (or a point receiver) is available, such a

description is valid both in the submillimeter and in the centimeter

wavelength regions. Unfortunately, there are no point detectors

(or coherent receivers) available in the submillimeter region at
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the present time. Instead, one must depend upon incoherent

receivers with extensive receiving areas. For these receivers

the beamwidth of the antenna pattern may not be diffraction

limited. Consider, for example, a receiver (or detector) which

has an input area of a square centimeter placed at the focal point

of the antenna (i. e., a circular collecting mirror of focal length

51). One can show from geometrical optics that any incident

radiation striking the reflector at an angle within the solid angle

[_] given by a/5_, where a is the receiver input area, would
S

at least partially reach the receiver input (if diffraction and aber-

ration effects are neglected, all of the radiation within this angle

would reach the receiver input). Here 51 is the focal length of

the mirror. In other words, the resolution of this optical system

is given by d/51 (d = diameter of the receiver input) and the maxl-

Z/a 1 For thegain of the antenna would be approximately 4_ 51 .

mirror diameter, D m, and the receiver input area both of

Z

reasonable size, (Din/k) z >> 51 /a and the gain of the antenna is

INotice that the solid angle zl_ is the geometric optical resolution

limit. It is slightly different from the definition of the beamwidth

of an antenna. In order to calculate the actual beamwidth of the

antenna we must first find the gain function G(8,_) by means of

geometrical optics, using aberration theorygand then find the

beamwidth according to the conventional definition. Such a deri-

vation is beyond the scope of the present paper.
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limited by geometrical considerations due to the extensive area

of the receiver input rather than by diffraction effects due to

the size of the collecting mirror. Assuming that the beamwidth

is much less than the solid angle subtended by the source one

can write from (I-4) that

(1-17) P =
Zc z h(Ak) a A m

Z
k s (_ch/kkTs _ i) 51

(watts),

where A m is the geometrical area of the collecting mirror.

Expressing the minlmum-detectable temperature change of

an equivalent black body in terms of the minimum detectable input

power change at the radiometer receiver input gives

k6_( ch/kkTs.1)ZkTZ[APmin ]

(I-18) [ATsmin] = (°K).

Z cSh z aAm(Ak)(¢ ch/kkTs)

This differs from Eq. (1-16) by the factor

kz z kz
5L _ (Fo)Z Z

(I-19) r- ZaAm a '_ ,

which _or very small wavelengths and large mirror apertures is

much less than 1.0. (Here F o expresses the effective aperture

(f-stop) of the antenna.) This would give the submillimeter radio-

meter an advantage over the microwave radiometer insofar as the
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ratio [APmin]/[ZkTsmin] is concerned, z providing the _ factor is

not >> 1.0. This helps to offset somewhat the inherent lack of sen-

sitivity in submillimeter receivers, and the effects of the _]factor.

Consider a typical far-infrared spectrograph which could be

used as a radiometer receiver in the submillimeter-wavelength

region, where F o = rr 51 /4A m = the effective aperture of the an-

J_tenna, F r = w _z/4Ar = the effective aperture of the receiver,

a = the receiver input area, and A r is the area of the receiver

optics if different from A m . As long as F oiF r all of the re-

ceived power except that lost by absorption and scattering in the

optical system will be delivered to the radiation detector. How-

ever, if the effective aperture of the receiver is less than that of

the antenna the F factor (Eq. (1-19)) must now be written as

z 2
kz 51 k 2 / ____z_ Zk2

_ __ JAr) = (Fr)Z(l-z0) r ( 5__ Za wa

or the f-stop number of the antenna optical system is replaced by

the f-stop number of the receiver optical system.

z This occurs because F << i. 0 in the submillimeter case where an

extensive-area detector is used. The increase in sensitivity thus

obtained results from this extensive detector (or receiver input)

area, and is accompanied by a decrease in the spatial resolution

as compared to what could be obtained with a coherent point

detector where .the beamwidth is determined by diffraction effects.
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Summarizing, the power delivered to the detector is

c Zh(ZX×)

(I-21) p : (F) -1 k3(ach/)_kTs_l ) (watts),

where r is calculated in terms of the limiting (either the receiver or

the antenna) aperture.

If the minimum power change which the detector can detect in

the wavenumber region (Av) is [APmin] then the minimum de-

tectable change in the black body temperature is

(I-ZZ) [ZXTsmin I = rn[ZXPminl _z r[APvmin]n= (*K),
ck(&v) ck(&_)

which is Eq. (4) of Chapter I.



APPENDIX II

GRATING MONOCHROMATOR RELATIONSHIPS

The angular dispersion of a diffraction grating (assuming a

Paschen-type mounting) is given by [Z6]

¢

ax _ d cos _ (cm),
a_ m

where _b is the angle of diffraction, m is the order number, and

d is the grating-line spacing. If the exit-slit width as viewed from

the grating position subtends a constant angle A_b, then the wave-

length bandwidth is approximately given by

and since

8k d cos
Ak = --A_ = _ Z_ (cm),

8_ m

I onv = v z_-_ ,, one has for the wavenumber passband

t laxI-v'd cos, la, I
m

which is used in deriving Eq. (26) in the texL. In a similar manner,

if the slit position is varied through the gratingls diffraction pattern

td_b ]=
at a constant rate, d__dt (the maximum value of which can be __

-_ if variations in the spectral density are to be recorded satis-

Z_ D .

factorily), then
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Ia_I- ._dco_ I_I
"_" 7.m -r D

(cm -I sec -1),

which is the scanning rate which is used in Eq. (26) in the text.
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APPENDIX III

FOURIER TRANSFORM RELATIONSHIPS

In complex form the Fourler-transform pair is

oo

g(t) = __ h(f) e "i2Trft df

oo

h(f) = _ g(t)
--CO

+i2 = ft
e dt.

I

l
l
l

l
l

Let the general function g(t) be set equal to (using the variables

defined in Chapter II)

Tp T_
g(t) =Io(t) for - --- < t< + -_

2 Z

= 0 otherwise,

and let h(f) now be the transform of this particular g(t)"

another general'time function is defined as

Then if

!

I

I
I

I
g(t) = l°(t) Z 2.

= 0 otherwise,

!

g(t) will be the same as g(t) except that it will be shifted along the

time axis :

m

i
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= h e "i_ _ f(t'Tp)df

I ._ [h c i2_fTp] _-i2_ftdf.

i = __ (0

i Therefore_

I . , __ i2wfT_n(f) - n(f)_ v .

i Similarly, if

. /'g(t + T_) for - 3Tp < t < - Tp

i g(t)- 10 otherwise, 2 2

i then

I hlf) = h(f) c -i2"rrfTp.

I

I

I

I

I

Fig. Ill-l--Io(t ) as a series of individual

functions of length Tp.

!
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If this is carried out for an infinite series such as is shown in

Fig. 111-1, where the total function is the periodic function, Io(t),

then

| I!

H(f) = h(f) + h(f) + h(f) + ...

-iZ_fTp
= h(f) [i + ei2_fTp + e + .-.]

=h(f) [I + Z cos Z_fTp + 2 cos 4wfTp + "-.].

It can now be shown (see the end of this Appendix) that the

part in the brackets is equivalent to a series of unit impulse

functions multiplied by 1/Tp appearing at the frequencies f = n/Tp

where n = 0, +1, .+Z, -... Therefore, H(f) consists of a series

of impulses of magnitude (not height) h(f)
appearing at fn = n/Tp.

Tp

The integrated area of any particular impulse is given by

O0

i iz.,otPn = H(fn) df - 1 g(t) e dr,
f --0 Tp oo

which in terms of the symbols used in Chapter U gives

Tp

iL_ 1 t dt.

Pn Tp lo(t) cos Z_fn
Z

!

Using the relation t = 7/s and fn = SVn this gives

Z

Pn =-T-Z S Io(_) cos 2wv_y d 2[s "

p o

I

I
I

I
I

I
I
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I
I

I

I
I
I

I
I
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I
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However, since the variable part of Io(y) = 0 between Vp (which

occurs at _ = Ymax) and Tp/2, this can be written as

2Vp _max t
Pn - _maxTp Io(_) cos 2_v n _/dy •

"O

which is Eq. (33) in the text.

Proof that H(f) is a series of unit impulses:

The Fourier series
a° +_F(x) = ,

k-1

where 11"

1 la k = --
w

F(x } cos kx dx,

a k cos kx,

can be put into the form

= aoF(f) +
k-1

ak cos Z_rTp(Id),

where _/Z Tp
a k : ZT F(f) cos k(Z_Tp)f clf.

")-I/ZTp

If F(f) consists of unit impulse functions occuring at f = n/Tp

where n = 0, +1, -+Z, -.., then a k = ZTp for all values ofk and

the Fourier series of F(f) will be

F(f) = [Tp + ZTp cos Z=fTp+ZTpCOS 4_f Tp + .-.].
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APPENDIX IV I
BEAM SPLITTER EFFICIENCY l

Consider a beam splitter which is much thinner that the I

wavelength of the radiation being measured. Define the complex I

electric field components as shown in Fig. IV-l, and define the I

To Movable Mirror E'mov .

o_ _,/ +,1" I
'"movI .@7 ,_/

Field I/To Fixed Mirror _Reflected,: R'_,.d I
Inciden? _+/ EFlxed --_ Rodioti°n_o_/ -

Ei AS° _R _ 5° T° Detect°r I

ED

Fig. IV.l--The electric fields associated with radiation
in the Michelson interferometer.

complex reflection coefficient of the beam splitter as l"R and the

complex transmission coefficient as FT . Then

Emo v = PRE i and Efixe d = I'TE i ,

1Experimental studies of the efficiency of various wire-mesh beam

splitters have been made at The Ohio State University[ZZ] and at

the University of Freiburg (Germany) [ 33] .
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, jemov
E =E e
m ov mov

JOflxed
!

and [fixed = [fixed £

|

E D = FT/' + rREfixe dmov

= rTr RE ie j8* + FRF TE ie jez ,

I and
! !

E R = rR Emo v + rTEfixed

I = rRr RE le jOi + FTF TE ie joz

I

I

I
I

I
|
I

For the case where the path-length difference is equal to zero,

O, =O z =O, which gives

E D = ZE I ej8 (rTrR)

and

ER = Ei ¢jo (r_ + r_).

The efficiency of the beam splitter can be defined as

--4 IrR IrT . _en _e v_e of Ir_ I_= Ir_ - 0.s
the efficiency factor is un.%y and E R = 0 due to the fact that for

a lossless beam splitter (F R + r T) must equal unity, and r R and

2 2

r T must differ in phase by ninety degrees. Thus, r R and r T

2 Z

must differ by 180 degrees, or (r R + FT) = 0 under the peak-

efficiency condition.
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Furthermore,

rT --IrTI#°T

it can be shown that if FR = IrR I CjOR and

IFT Iz (Z + Z co. (91 -ez))

and

IEi Iz

-IrR 14 + lrr I' + z Ir_ I' lrT 12{oos Z(O_.R-OT)COs(O,-Oz)

-sin Z(SR-eT) sin(81 -e z)).

These then are the relations which, assuming unity incident power,

give PD1 and PDz respectively as used in Eqs. (60) and (59) of the

text.
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APPENDIX V

REQUIRED ACCURACY OF OPTICAL ALIGNMENT

There are two major sources of optical misalignment which

may contribute to errors in determining the interferogram function

in the aperiodic case. The first of these is an angular error in

the adjustment of the beam splitter and/or the mirrors of the inter-

ferometer, and the second is the non-uniformity of motion of the

movable mirror with respect to the angular position of the saw-

tooth cam which triggers the digital recorder system. A less

serious source of error is the relative error in determining the

value of the maximum path-length difference, Ymax" It is not as

important as the first two sources because it will lead only to the

same relative error in determining the wavelength of a particular

spectral characteristic as was present in determining Xmax-

From Chapter HI it was found that a phase difference of ZO

electrical degrees at k = 100 microns corresponds to a displace-

ment error of about 0.0006 centimeters. Thus, considering a ray

of radiation divided by the beam splitter into two equal-magnitude

rays which are sent to the fixed and movable mirrors respectively,

139
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one sees that the adjustment of the mirrors must be such that

the two beams reflected from the mirrors back to the beam splitter

must strike the beam splitter within about 0.0006 centimeters of

each other. Since the change in the position of the point at which

the beam strikes the beam splitter is (for very small angles)

proportional to the product of the distance from the beam splitter

to the mirror times twice the angular change made in the mirror

orientation, one finds that for the instrument described in Chapter

1V the mirrors must be adjusted to and maintained within approxi-

mately 0.0009 degree. Since the three adjusting screws which

support each of the mirrors are about two inches apart, this

corresponds to a tolerance of adjustment on each of the screws of

about 0.00003 inch, which certainly requires careful mechanical

design and adjustment, but is by no means uuachievable.

Applying the tolerance criterion of one-half of 0.0006 centi-

meters (since _ is twice the displacement of the movable mirror)

to the uniformity of motion of the movable mirror (which also

implies the ability to maintain the mirror position within 0. 0003

centimeters), and the ratio of 1.7 inches to 0o78 centimeter which

exists between the lead-screw-follower motion and the movable-

mirror motion, it is found that the uniformity tolerance limit of

the lead screw which is driven by the gearmotor must be about

I
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0. 00065 inch, which should not be difficult to obtain. The toler-

ances on the sawtooth cam may be quite wide, since the distance

between points corresponds to only 0. 001 centimeter motion of

the movable mirror. The looseness of the ratio-arm-pivot-point

bearings, the pivot-mounting-block slide bushings and the bushings

through which the ratio arm slides must not total more than 0. 0003

centimeter or about 0. 0001 inch, at least for motion of the movable

mirror in one direction. This latter criterion need not hold for

motion in both directions, since in the periodic case where motion

reversal occurs at the end of each linear stroke, any backlash

occurring during the reversal may be compensated for by the

proper adjustment of the reference signal. Also, although it would

be desirable to have the pivot point shift by no more than 0. 0001

inch in a direction parallel to the movable-mirror motion as the

pivot-point mounting block moves along its ways, this is not an

absolutely necessary requirement if, while during operation in the

periodic mode where it is desired to scan in terms of the wave-

number to which the instrument is tuned, the synchronization of

the radiation-detector output with the reference signal is con-

stantly monitored and corrected as the test progresses.
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Chapter I

k

T s

y

Elv).

k

c

h

[A Prnin ]

[ATsmin]

F

GLOSSARY OF SYMBOLS

Wavelength (in centimeters unless otherwise stated)

Source temperature (degrees Kelvin)

Wavenumber (centimeters -1 )

Power spectral density (watt-cm)

Boltzman's constant, 1.38 X 10 "z3

(watt- s ec / deg re e Kelvin)

Speed of light, 3 X 10 I° (centimeters/second)

Planck's constant, 6o6Z5 X 10 -34 (watt-seconds z )

Minimum change in the input power which a radiation

receiver can detect (watts)

Minimum change in the source temperature which can

be detected (degrees Kelvin)

A factor depending upon k and T s which expresses

the c6rrection due to the use of the exact form of

the radiation law (see Fig. i)

A factor expressing the dependence of [_Tsmin ] upon

the source size, observation wavelength, and the

parameters of the radiometer optical system

Radiometer receiver passband (centimeters" 1 )

Focal length of the submillimeter radiometer

collecting optics (centimeters)
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Eo(v,y)

Io(_)

Ymax

!

Io(y)

w(y)
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Input aperture area of the submillimeter receiver, or the

image size of the radiation detector at the receiver input,

whichever is smaller (centimeters z )

Aperture area (geometrical) of the collecting optics of

the submillimeter radiometer (centimeters 2 )

f-stop number of the collecting optics (or of the sub-

millimeter receiver if its f-stop number is numerically

greater than that of the collecting optics)

3.1416

Solid angle subtended by the source when viewed from

the radiometer (square radians - dimensionless)

F_.ffective antenna aperture of a linearly-polarized

centimeter - wavelength antenna (centimeters z )

Minimum detectable power spectral density (watt-cm)

Power spectral density of the input radiation (watt-cm)

Path length difference (centimeters unless otherwise

stated)

Power spectral density at the output of the interferometer

(the detector input) as a function of the path length

difference (watt- cm)

Total power at the interferometer output (detector

input) (watts)

Maximum path length difference (centimeters unless

otherwise stated)

Io(y)truncatedat + Ymax (watts)

Window function which truncate s I o (y)



V !

V n

n

Av

Ay

!

EmI(v)

!

Ymax

(A V)G

K

PD

(NEP)

T D
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Measured power spectral density obtained by the aperi-

odic interferometric process (watt-cm)

Instrument response function in the aperiodic case

(centimeters)

Same as v, but used as a dummy variable (centimeters -l )

Values of v at which Emi(v ) may be computed with
validity (centimeters "I )

Index number (integer)

Width of the main peak of the instrument response

function (centimeters -1 )

Spacing between data points taken in the aperiodic

case (centimeters unless otherwise stated)

Emi(v ) obtained with the improved form of the
instrument response function (watt-cm)

_max value corresponding to the improved instrument

response function (centimeters)

Number of basic instrument response functions

combined to give the improved response function

Bandwidth of the grating monochromator

(cent{meter s -1 )

Fraction of the input radiation diffracted into the

first grating order in the grating instrument

Power delivered to the radiation detector in the

grating receiver (watts)

Noise-equivalent power of the radiation detector

as determined by an audio correlator of one cycle -

per- second effective bandwidth (watt- secl/z )

Time constant of the correlator circuit or

synchronous rectifier used in the radiometer

receiver (seconds)
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N(f)

SI(f)

g

N(t)

T t
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Vz,_

Q

t

QG

QI
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Signal-to-noise ratio of the grating receiver

The mean-square noise voltage spectral density of the

noise appearing on the interferogram function expressed

as a voltage time function (volts z /second)

Io(y) expressed as a time function (watts)

Radiation detection system response factor

(volts/watt)

Audio frequency (cps or seconds-1 }

Velocity of change of the path length difference

(centimeter s / second)

Voltage output spectrum of the aperiodic receiver

correlator due to the radiation power at the wave-

number v = fs (volt-seconds)

The noise voltage on the interferogram time voltage

function (volts)

The total length of time spent in measuring the entire

spectral region of interest (seconds)

Signal-to-noise ratio of the interferometric receiver

Bandwidth of the interferometric receiver

(centimeter s -1 )

Limits (upper and lower) of the spectral region it is

desired to measure (centimeters -l )

Radiometer receiver figure of merit (1/watt-sec)

Time (seconds)

Grating instrument figure of merit (I/watt-seconds)

Aperiodic interferometer receiver figure of merit

(1/watt-seconds)
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m

d

Vp

Tp

fo

fn

Pn

!

Vn

Emp( V n)

Rp(v_ , v )

N

(AV)p
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Number of spectral elements to be determined between

the limits u 1 and u
Z

Grating order number

Grating line spacing (centimeters)

Angle at which radiation is diffracted from the grating

Slit width expressed in terms of the angle subtended

by the slit when viewed at the grating

Time required to scan from y = 0 to y = Ymax or the

equivalent in the periodic case (seconds)

Period of operation of the periodic interferometric

receiver (seconds)

Frequency of operation of the periodic receiver

(seconds- * )

Audio frequency associated with the radiation wave-

number v in the case of the periodic receiver

(seconds'*)

The n th audio harmonic of the frequency fo

(seconds -1 )

Power of the radiation modulated at the audio frequency

fn in the periodic case (watts)

Value of v corresponding to the periodic instrument's

n th audio harmonic frequency, fn (centimeters-*)

Measured power spectral density in the periodic

case (watt- cm)

Instrument response function of the periodic instrument

(c entimete r s )

A particular value of the integer index number, n

Resolution of the periodic instrument (centimeters-*)
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C

Qp

V max

bn

_n(v)

Xn

Em (v k)

Ei(vj)

(sv)

[Rkj ]

[Eij ]

155

Noise power level at the output of the periodic instrument

(watt s )

Signal-to-noise ratio of the periodic instrument

Relative resolution of the periodic instrument

Q for the periodic case (1/watt-seconds)

The maximum wavenumber at which Ei( v ) is assumed to
be non-zero (centimeters -1 )

Coefficients of the expansion of Io(y} in terms of the

eigenfunctions _n(y)

The prolate spheroidal wave functions

Eigenvalues of _n(y)

(k j, k k, @j(v)" '_k(v)' Cj, and C k are the eigenvalues,

prolate spheroidal wave functions and expansion

coefficients corresponding to the expansion of El(v)
on the v axis)

Measured power spectral density at the incremental

wavenumber value Vk (watt-centimeter)

The input power spectral density at the incremental

wavenumber value vj (watt-centimeters)

The minimum increment between vj and v j+ 1
(c entimete r s- l )

The measured power spectral density expressed as

a matrix (watt-centimeters)

The instrument response function expressed as a

square matrix

The input power spectral density expressed as a

matrix (watt- cm)
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F T

L

r

G

q

G
max

_max

P
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eR

8 T

e l

_z

PD,
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Voltage reflection coefficient of the beam splitter

Voltage transmission of the beam splitter

Focal length of the input collimating system

(centimeter s)

Angle of the collimated radiation in the interferometer

(degrees or radians)

Distance from the center of the source of a particular

point of radiation being considered (centimeters)

Displacement of the movable mirror in the Michelson

system (centimeters unless otherwise stated)

Length of the ray path shown in Fig. (, (centimeters)

Maximum value of the movable mirror displacement

(centimete r s)

4p corresponding to the radiation from the outer rim
of the source

Power delivered to the second radiation detector in

Fellgett's system (watts)

Phase angle of FR

Phase angle of F T

Phase shift to and from the fixed mirror

Phase shift to and from the movable mirror

Power delivered to the first (normally the only)

radiation detector (watts)
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[A Ei(v)min ]
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A S

A D

!

A D
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Chapter V

[ dr]

Appendix l

Ak

_k

Pk

Ae(_¢}
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The minimum detectable power spectral density in the

case of the aperiodic interferometric receiver {watt-

centimeter s )

Focal length of the interferometer input optics

(centimeters}

Focal length of the detector optics (centimeters)

Diameter of the interferometric receiver optics

(centimeter s )

Area of the radiation test source (centimeters z )

Area of the radiation detector (centimeters z }

Detector area imaged upon the plane of the source

area (centimeters z )

Solid angle into which the test source radiates

Fraction that digitizing noise is of the maximum Io(_/)

Spacing between points tin wavenumber) at which

Era{v) is calculated in the aperiodic mode

Bandwidth of the grating instrument expressed in

terms of the wavelength rather than the wavenumber

(centimeters)

Planck's radiation density factor (watts/ca 4)

Black-body radiation power per solid angle per

surface area per wavelength increment

(watts / cm 3 - sterad)

Effective antenna area as viewed from direction of 8

and ¢ (cmz )
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g(t)

h(f)

x

H(f)

F(x)

ak

F(f)

Ei
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Power incident upon the radiometer antenna (watts)

Distance from the radiometer to the source (cm)

Increment of radiation source area (am z )

Solid angle of de as viewed from the radiometer

Total solid angle of the source

T s in the direction given by 8 and _ (OK)

Antenna gain function (referred to an isotropic source)

Diameter of the receiver input (cm)

Diameter of the antenna mirror (cm)

Area of receiver optics (cm z )

f-number of the receiver optics

Generalized time function

Generalized frequency function

Generalized coordinate

Fourier transform of Io(t)

Generalized function of x

Coefficients of the Fourier series of a generalized

function

Generalized function of frequency

Electric field of the incident radiation

(volts/centimeter)
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Fmov

!

Emov

Efixed

!

Efixed

ED

ER

Electric field of the radiation reflected towards the

movable mirror by the beam splitter (volts/centi-

meter)

Electric field of the radiation returning from the

movable mirror (volts/centimeter)

Electric field of the radiation reflected towards the

fixed mirror by the beam splitter (volts/centimeter)

Electric field of the radiation returning from the

fixed mirror (volts/centimeter)

Electric field of the radiation transmitted to the

detector (volts/centimeter)

Electric field of the radiation reflected back out

the input of the receiver {volts/centimeter)
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